Stan数学库安装与使用指南
2024-09-22 18:35:06作者:范垣楠Rhoda
1. 项目目录结构及介绍
斯坦数学库(Stan Math Library)是一个基于C++的模板库,专为实现任意阶自动微分而设计,支持前向模式、反向模式以及混合模式。它提供了广泛的内置函数,涵盖了概率建模、线性代数和方程求解等领域。以下是对项目主要目录结构的概述:
├── benchmarks # 性能基准测试相关文件
├── doxygen # 文档生成配置
├── hooks # Git钩子脚本
├── lib # 核心库代码
│ ├── stan # Stan相关的特定实现或接口
├── licenses # 许可证文件
├── make # Makefile构建脚本
├── stan # 可能包含Stan特定逻辑或接口的进一步细分
├── test # 测试文件夹,用于单元测试等
├── clang-format # Clang格式化工具配置
├── git-blame-ignore-revs # Git Blame忽略修订的配置
├── gitattributes # Git属性配置
├── gitignore # Git忽略文件列表
├── Jenkinsfile # Jenkins持续集成配置文件
├── LICENSE.md # 项目许可证信息
├── README.md # 主要的项目说明文件
├── RELEASE-NOTES.txt # 发布笔记
├── runChecks.py # 运行检查的Python脚本
└── runTests.py # 运行测试的Python脚本
每个目录或文件都有其特定目的,例如lib
包含核心库代码,test
用于存放测试案例,而LICENSE.md
则记录了项目的授权方式。
2. 项目的启动文件介绍
Stan Math作为一个库,并没有直接提供一个“启动文件”以运行整个应用。开发者通常将其作为依赖整合到自己的项目中去。然而,如果需要从源码编译并使用该库进行开发,主要入口点可能是通过构建系统(如make
命令或使用CMake)来编译测试程序或者示例应用。在实际操作中,开发者会查看makefile
或执行runChecks.py
, runTests.py
这样的脚本来验证库是否正确编译和工作。
3. 项目的配置文件介绍
该项目的核心配置主要是通过doxygen
目录下的配置文件来管理文档自动生成,这并不直接影响库的日常使用。对于开发者而言,重要的“配置”可能更多体现在如何设置编译环境(比如通过.gitattributes
和.gitignore
定义版本控制行为,或是通过修改Makefile来调整编译选项)。实际上,没有一个单独的配置文件直接用于项目运行或功能定制,配置过程更倾向于遵循C++项目的常规编译流程和环境变量设置。
以上是Stan Math Library的基本结构概览和关键点介绍。开发者在使用时需参考具体的库文档和API指南以深入理解和应用。记得在集成此库时查阅官方网站和文档获取最新信息和最佳实践。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~062CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
187

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
881
521

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
361
381

React Native鸿蒙化仓库
C++
181
264

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
613
60

open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
118
78