CapsNet-Pytorch 使用教程
2024-08-24 23:44:02作者:郦嵘贵Just
本教程将引导您了解并使用 CapsNet-Pytorch 开源项目,这是一个基于 PyTorch 实现的胶囊网络(CapsNet),该实现参照了 NIPS 2017 年度论文《Dynamic Routing Between Capsules》。此项目适用于希望深入研究胶囊网络原理与应用的研究人员和开发者。
1. 目录结构及介绍
项目的基本目录结构如下:
CapsNet-Pytorch
│
├── capsulenet.py # 核心模型定义文件,包括CapsNet的构建逻辑
├── train.py # 训练脚本,用于训练模型
├── test.py # 测试脚本,加载预训练模型进行测试
├── requirements.txt # 项目依赖列表
├── README.md # 项目说明文档
├── data # 存放数据处理相关脚本或数据集链接
│ └── mnist_loader.py # MNIST数据加载器
└── result # 结果保存目录,包括训练好的模型和测试结果
- capsulenet.py:包含了CapsNet的核心结构,实现了动态路由机制。
- train.py:启动文件,用于训练模型,可以通过命令行参数进行配置。
- test.py:用于测试已训练的CapsNet模型,展示测试准确率和重建图像。
- requirements.txt:列出所有必要的Python库版本要求。
- data/mnist_loader.py:专门用于加载MNIST数据集的脚本。
2. 启动文件介绍
训练模型
主要的启动文件之一是 train.py,通过这个脚本您可以训练胶囊网络模型。基本用法如下:
python train.py
您还可以通过添加参数来自定义训练过程,例如指定批次大小、学习率等。查看详细用法,可以使用:
python train.py -h
测试模型
测试阶段使用 test.py 文件,需提供已训练的模型权重路径:
python test.py --weights path/to/trained_model.pkl
这里的 --weights 参数指定了模型文件的位置,如果不指定,默认路径应为 result/trained_model.pkl。
3. 配置文件介绍
尽管本项目没有单独的配置文件,但所有配置项都是通过命令行参数传递给训练和测试脚本的。在 train.py 和 test.py 中,通过解析命令行参数的方式进行配置管理。例如,如果您想自定义训练轮数(epochs)、批次大小(batch_size)等,可以在调用 train.py 时指定相应的参数。对于更加复杂的配置需求,用户可能需要直接修改脚本内部的默认设置或利用环境变量等方式进一步定制化。
通过以上步骤,您可以顺利地开始使用 CapsNet-Pytorch 项目,无论是进行胶囊网络的学习、研究还是实际应用。记得在开始之前确保安装了所有必要的依赖包,遵循 requirements.txt 文件中的指示操作。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178