NotACracker/COTR项目模型定制化开发指南
模型组件概述
在NotACracker/COTR项目中,3D目标检测模型的架构通常可以分为6大核心组件,每个组件承担着不同的功能:
-
编码器(Encoder):处理原始点云数据,包括体素化层(voxel layer)、体素编码器(voxel encoder)和中间编码器(middle encoder),如HardVFE和PointPillarsScatter等
-
骨干网络(Backbone):通常是全卷积网络(FCN),用于提取特征图,如ResNet、SECOND等
-
颈部网络(Neck):连接骨干网络和检测头的中间组件,如FPN、SECONDFPN等
-
检测头(Head):执行特定任务的组件,如边界框预测和掩码预测
-
RoI提取器(RoI extractor):从特征图中提取感兴趣区域特征,如H3DRoIHead和PartAggregationROIHead
-
损失函数(Loss):检测头中用于计算损失的组件,如FocalLoss、L1Loss和GHMLoss等
自定义组件开发流程
开发新的编码器
以开发HardVFE体素特征编码器为例:
- 创建编码器类: 在指定目录下创建新文件,定义编码器类并使用装饰器注册:
import torch.nn as nn
from ..builder import VOXEL_ENCODERS
@VOXEL_ENCODERS.register_module()
class HardVFE(nn.Module):
def __init__(self, arg1, arg2):
# 初始化参数
pass
def forward(self, x):
# 实现前向传播逻辑
pass
-
导入模块: 可以通过修改__init__.py文件或配置文件的custom_imports实现
-
配置使用: 在模型配置中指定新编码器类型和参数
开发新的骨干网络
以SECOND网络为例:
- 定义网络结构: 创建新文件定义网络类并注册:
import torch.nn as nn
from ..builder import BACKBONES
@BACKBONES.register_module()
class SECOND(BaseModule):
def __init__(self, arg1, arg2):
# 网络结构定义
pass
def forward(self, x):
# 特征提取逻辑
pass
- 导入与配置: 与编码器类似,可通过多种方式导入并在配置中指定
开发新的颈部网络
以SECONDFPN为例:
- 实现颈部网络: 创建新文件定义网络结构:
from ..builder import NECKS
@NECKS.register_module()
class SECONDFPN(BaseModule):
def __init__(self, in_channels, out_channels, upsample_strides):
# 特征金字塔网络实现
pass
def forward(self, X):
# 多尺度特征融合逻辑
pass
- 配置使用: 在模型配置中指定输入输出通道等参数
开发新的检测头
以PartA2检测头为例,这是一个两阶段检测器中的RoI Head:
- 实现边界框头: 创建新文件定义bbox head:
from mmdet.models.builder import HEADS
from .bbox_head import BBoxHead
@HEADS.register_module()
class PartA2BboxHead(BaseModule):
def __init__(self, num_classes, seg_in_channels, part_in_channels):
# 初始化分类和回归分支
pass
def forward(self, seg_feats, part_feats):
# 前向计算逻辑
pass
- 实现RoI Head: 继承Base3DRoIHead实现完整检测头:
@HEADS.register_module()
class PartAggregationROIHead(Base3DRoIHead):
def __init__(self, semantic_head, num_classes, seg_roi_extractor=None):
# 初始化各组件
pass
def _bbox_forward(self, seg_feats, part_feats, voxels_dict, rois):
# 特征提取和预测逻辑
pass
- 配置使用: 在模型配置中详细指定各组件参数
开发新的损失函数
以自定义回归损失MyLoss为例:
- 实现损失函数: 创建新文件定义损失计算:
from ..builder import LOSSES
from .utils import weighted_loss
@weighted_loss
def my_loss(pred, target):
# 自定义损失计算逻辑
return torch.abs(pred - target)
@LOSSES.register_module()
class MyLoss(nn.Module):
def __init__(self, reduction='mean', loss_weight=1.0):
# 初始化参数
pass
def forward(self, pred, target, weight=None):
# 加权损失计算
return self.loss_weight * my_loss(pred, target, ...)
- 配置使用: 在检测头的loss配置中指定新损失类型
最佳实践建议
-
模块化设计:保持每个组件的功能单一性,便于复用和替换
-
参数化配置:通过配置文件灵活调整模型结构和超参数
-
继承机制:合理使用基类提供的通用功能,只重写必要方法
-
测试验证:开发新组件后应进行单元测试和完整模型验证
-
性能优化:特别关注3D数据处理和体素化操作的效率
通过遵循这些开发模式,可以高效地为NotACracker/COTR项目扩展新的模型组件,同时保持代码的整洁性和可维护性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00