NotACracker/COTR项目教程:自定义数据集完全指南
2025-07-04 05:01:37作者:管翌锬
前言
在3D目标检测领域,数据集的准备和处理是模型训练的关键环节。NotACracker/COTR项目提供了灵活的数据集自定义方案,本文将详细介绍如何根据项目需求自定义数据集。
数据集格式支持方案
方案一:转换为现有格式
对于无法直接在线读取的数据,推荐转换为KITTI格式:
- 数据转换器开发:编写脚本将原始数据重组并转换为KITTI格式
- 数据集类继承:根据数据特性继承现有数据集类进行微调
- 配置文件修改:调整数据路径和类别配置
优势:实现简单,可直接复用现有数据处理流程
方案二:转换为中间格式
项目支持将数据转换为pickle中间格式,每个帧数据包含以下关键信息:
image:图像元数据(路径、尺寸等)point_cloud:点云数据信息calib:校准参数annos:标注信息(边界框、类别等)
这种格式的优势在于:
- 不强制要求原始数据组织结构
- 灵活性高,可适应不同数据源
- 便于统一处理流程
自定义数据集实现示例
数据集类实现
以下是一个完整的自定义数据集实现示例:
@DATASETS.register_module()
class MyDataset(Custom3DDataset):
# 定义数据集类别
CLASSES = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
'bookshelf', 'picture', 'counter', 'desk', 'curtain',
'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
'garbagebin')
def __init__(self, data_root, ann_file, pipeline=None, classes=None,
modality=None, box_type_3d='Depth', filter_empty_gt=True,
test_mode=False):
super().__init__(
data_root=data_root,
ann_file=ann_file,
pipeline=pipeline,
classes=classes,
modality=modality,
box_type_3d=box_type_3d,
filter_empty_gt=filter_empty_gt,
test_mode=test_mode)
def get_ann_info(self, index):
info = self.data_infos[index]
if info['annos']['gt_num'] != 0:
gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(np.float32)
gt_labels_3d = info['annos']['class'].astype(np.int64)
else:
gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32)
gt_labels_3d = np.zeros((0,), dtype=np.int64)
gt_bboxes_3d = DepthInstance3DBoxes(
gt_bboxes_3d,
box_dim=gt_bboxes_3d.shape[-1],
with_yaw=False,
origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)
pts_instance_mask_path = osp.join(self.data_root, info['pts_instance_mask_path'])
pts_semantic_mask_path = osp.join(self.data_root, info['pts_semantic_mask_path'])
return dict(
gt_bboxes_3d=gt_bboxes_3d,
gt_labels_3d=gt_labels_3d,
pts_instance_mask_path=pts_instance_mask_path,
pts_semantic_mask_path=pts_semantic_mask_path)
配置文件调整
在配置文件中使用自定义数据集:
dataset_A_train = dict(
type='MyDataset',
ann_file='annotation.pkl',
pipeline=train_pipeline
)
数据集包装器应用
项目提供了三种数据集包装器来增强数据使用:
1. 重复数据集(RepeatDataset)
dataset_A_train = dict(
type='RepeatDataset',
times=N, # 重复次数
dataset=dict( # 原始数据集配置
type='Dataset_A',
pipeline=train_pipeline
)
)
2. 类别平衡数据集(ClassBalancedDataset)
dataset_A_train = dict(
type='ClassBalancedDataset',
oversample_thr=1e-3, # 过采样阈值
dataset=dict(
type='Dataset_A',
pipeline=train_pipeline
)
)
3. 数据集拼接(ConcatDataset)
三种拼接方式:
方式一:相同类型数据集拼接
dataset_A_train = dict(
type='Dataset_A',
ann_file=['anno_file_1', 'anno_file_2'],
separate_eval=False, # 是否分开评估
pipeline=train_pipeline
)
方式二:不同类型数据集拼接
data = dict(
train=[dataset_A_train, dataset_B_train],
val=dataset_A_val,
test=dataset_A_test
)
方式三:显式使用ConcatDataset
data = dict(
val=dict(
type='ConcatDataset',
datasets=[dataset_A_val, dataset_B_val],
separate_eval=False
)
)
数据集类别修改
可以灵活调整数据集的类别:
直接指定类别列表
classes = ('person', 'bicycle', 'car')
data = dict(
train=dict(classes=classes),
val=dict(classes=classes),
test=dict(classes=classes))
从文件读取类别
classes = 'path/to/classes.txt' # 每行一个类别名
data = dict(
train=dict(classes=classes),
val=dict(classes=classes),
test=dict(classes=classes))
注意事项
- 空样本过滤行为在v2.5.0前后有变化,需注意版本兼容性
- 中间格式数据不包含类别名,使用CustomDataset时需离线处理空样本
- 类别平衡数据集和重复数据集的评估功能暂不支持
结语
通过本文介绍的自定义数据集方法,开发者可以灵活地将各种3D数据源集成到NotACracker/COTR项目中。建议根据数据特点选择合适的实现方案,平衡开发效率与系统性能。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
369
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882