NotACracker/COTR项目教程:自定义数据集完全指南
2025-07-04 02:36:34作者:管翌锬
前言
在3D目标检测领域,数据集的准备和处理是模型训练的关键环节。NotACracker/COTR项目提供了灵活的数据集自定义方案,本文将详细介绍如何根据项目需求自定义数据集。
数据集格式支持方案
方案一:转换为现有格式
对于无法直接在线读取的数据,推荐转换为KITTI格式:
- 数据转换器开发:编写脚本将原始数据重组并转换为KITTI格式
- 数据集类继承:根据数据特性继承现有数据集类进行微调
- 配置文件修改:调整数据路径和类别配置
优势:实现简单,可直接复用现有数据处理流程
方案二:转换为中间格式
项目支持将数据转换为pickle中间格式,每个帧数据包含以下关键信息:
image:图像元数据(路径、尺寸等)point_cloud:点云数据信息calib:校准参数annos:标注信息(边界框、类别等)
这种格式的优势在于:
- 不强制要求原始数据组织结构
- 灵活性高,可适应不同数据源
- 便于统一处理流程
自定义数据集实现示例
数据集类实现
以下是一个完整的自定义数据集实现示例:
@DATASETS.register_module()
class MyDataset(Custom3DDataset):
# 定义数据集类别
CLASSES = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
'bookshelf', 'picture', 'counter', 'desk', 'curtain',
'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
'garbagebin')
def __init__(self, data_root, ann_file, pipeline=None, classes=None,
modality=None, box_type_3d='Depth', filter_empty_gt=True,
test_mode=False):
super().__init__(
data_root=data_root,
ann_file=ann_file,
pipeline=pipeline,
classes=classes,
modality=modality,
box_type_3d=box_type_3d,
filter_empty_gt=filter_empty_gt,
test_mode=test_mode)
def get_ann_info(self, index):
info = self.data_infos[index]
if info['annos']['gt_num'] != 0:
gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(np.float32)
gt_labels_3d = info['annos']['class'].astype(np.int64)
else:
gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32)
gt_labels_3d = np.zeros((0,), dtype=np.int64)
gt_bboxes_3d = DepthInstance3DBoxes(
gt_bboxes_3d,
box_dim=gt_bboxes_3d.shape[-1],
with_yaw=False,
origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)
pts_instance_mask_path = osp.join(self.data_root, info['pts_instance_mask_path'])
pts_semantic_mask_path = osp.join(self.data_root, info['pts_semantic_mask_path'])
return dict(
gt_bboxes_3d=gt_bboxes_3d,
gt_labels_3d=gt_labels_3d,
pts_instance_mask_path=pts_instance_mask_path,
pts_semantic_mask_path=pts_semantic_mask_path)
配置文件调整
在配置文件中使用自定义数据集:
dataset_A_train = dict(
type='MyDataset',
ann_file='annotation.pkl',
pipeline=train_pipeline
)
数据集包装器应用
项目提供了三种数据集包装器来增强数据使用:
1. 重复数据集(RepeatDataset)
dataset_A_train = dict(
type='RepeatDataset',
times=N, # 重复次数
dataset=dict( # 原始数据集配置
type='Dataset_A',
pipeline=train_pipeline
)
)
2. 类别平衡数据集(ClassBalancedDataset)
dataset_A_train = dict(
type='ClassBalancedDataset',
oversample_thr=1e-3, # 过采样阈值
dataset=dict(
type='Dataset_A',
pipeline=train_pipeline
)
)
3. 数据集拼接(ConcatDataset)
三种拼接方式:
方式一:相同类型数据集拼接
dataset_A_train = dict(
type='Dataset_A',
ann_file=['anno_file_1', 'anno_file_2'],
separate_eval=False, # 是否分开评估
pipeline=train_pipeline
)
方式二:不同类型数据集拼接
data = dict(
train=[dataset_A_train, dataset_B_train],
val=dataset_A_val,
test=dataset_A_test
)
方式三:显式使用ConcatDataset
data = dict(
val=dict(
type='ConcatDataset',
datasets=[dataset_A_val, dataset_B_val],
separate_eval=False
)
)
数据集类别修改
可以灵活调整数据集的类别:
直接指定类别列表
classes = ('person', 'bicycle', 'car')
data = dict(
train=dict(classes=classes),
val=dict(classes=classes),
test=dict(classes=classes))
从文件读取类别
classes = 'path/to/classes.txt' # 每行一个类别名
data = dict(
train=dict(classes=classes),
val=dict(classes=classes),
test=dict(classes=classes))
注意事项
- 空样本过滤行为在v2.5.0前后有变化,需注意版本兼容性
- 中间格式数据不包含类别名,使用CustomDataset时需离线处理空样本
- 类别平衡数据集和重复数据集的评估功能暂不支持
结语
通过本文介绍的自定义数据集方法,开发者可以灵活地将各种3D数据源集成到NotACracker/COTR项目中。建议根据数据特点选择合适的实现方案,平衡开发效率与系统性能。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92