NotACracker/COTR项目教程:自定义数据集完全指南
2025-07-04 03:20:31作者:管翌锬
前言
在3D目标检测领域,数据集的准备和处理是模型训练的关键环节。NotACracker/COTR项目提供了灵活的数据集自定义方案,本文将详细介绍如何根据项目需求自定义数据集。
数据集格式支持方案
方案一:转换为现有格式
对于无法直接在线读取的数据,推荐转换为KITTI格式:
- 数据转换器开发:编写脚本将原始数据重组并转换为KITTI格式
- 数据集类继承:根据数据特性继承现有数据集类进行微调
- 配置文件修改:调整数据路径和类别配置
优势:实现简单,可直接复用现有数据处理流程
方案二:转换为中间格式
项目支持将数据转换为pickle中间格式,每个帧数据包含以下关键信息:
image:图像元数据(路径、尺寸等)point_cloud:点云数据信息calib:校准参数annos:标注信息(边界框、类别等)
这种格式的优势在于:
- 不强制要求原始数据组织结构
- 灵活性高,可适应不同数据源
- 便于统一处理流程
自定义数据集实现示例
数据集类实现
以下是一个完整的自定义数据集实现示例:
@DATASETS.register_module()
class MyDataset(Custom3DDataset):
# 定义数据集类别
CLASSES = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
'bookshelf', 'picture', 'counter', 'desk', 'curtain',
'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
'garbagebin')
def __init__(self, data_root, ann_file, pipeline=None, classes=None,
modality=None, box_type_3d='Depth', filter_empty_gt=True,
test_mode=False):
super().__init__(
data_root=data_root,
ann_file=ann_file,
pipeline=pipeline,
classes=classes,
modality=modality,
box_type_3d=box_type_3d,
filter_empty_gt=filter_empty_gt,
test_mode=test_mode)
def get_ann_info(self, index):
info = self.data_infos[index]
if info['annos']['gt_num'] != 0:
gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(np.float32)
gt_labels_3d = info['annos']['class'].astype(np.int64)
else:
gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32)
gt_labels_3d = np.zeros((0,), dtype=np.int64)
gt_bboxes_3d = DepthInstance3DBoxes(
gt_bboxes_3d,
box_dim=gt_bboxes_3d.shape[-1],
with_yaw=False,
origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)
pts_instance_mask_path = osp.join(self.data_root, info['pts_instance_mask_path'])
pts_semantic_mask_path = osp.join(self.data_root, info['pts_semantic_mask_path'])
return dict(
gt_bboxes_3d=gt_bboxes_3d,
gt_labels_3d=gt_labels_3d,
pts_instance_mask_path=pts_instance_mask_path,
pts_semantic_mask_path=pts_semantic_mask_path)
配置文件调整
在配置文件中使用自定义数据集:
dataset_A_train = dict(
type='MyDataset',
ann_file='annotation.pkl',
pipeline=train_pipeline
)
数据集包装器应用
项目提供了三种数据集包装器来增强数据使用:
1. 重复数据集(RepeatDataset)
dataset_A_train = dict(
type='RepeatDataset',
times=N, # 重复次数
dataset=dict( # 原始数据集配置
type='Dataset_A',
pipeline=train_pipeline
)
)
2. 类别平衡数据集(ClassBalancedDataset)
dataset_A_train = dict(
type='ClassBalancedDataset',
oversample_thr=1e-3, # 过采样阈值
dataset=dict(
type='Dataset_A',
pipeline=train_pipeline
)
)
3. 数据集拼接(ConcatDataset)
三种拼接方式:
方式一:相同类型数据集拼接
dataset_A_train = dict(
type='Dataset_A',
ann_file=['anno_file_1', 'anno_file_2'],
separate_eval=False, # 是否分开评估
pipeline=train_pipeline
)
方式二:不同类型数据集拼接
data = dict(
train=[dataset_A_train, dataset_B_train],
val=dataset_A_val,
test=dataset_A_test
)
方式三:显式使用ConcatDataset
data = dict(
val=dict(
type='ConcatDataset',
datasets=[dataset_A_val, dataset_B_val],
separate_eval=False
)
)
数据集类别修改
可以灵活调整数据集的类别:
直接指定类别列表
classes = ('person', 'bicycle', 'car')
data = dict(
train=dict(classes=classes),
val=dict(classes=classes),
test=dict(classes=classes))
从文件读取类别
classes = 'path/to/classes.txt' # 每行一个类别名
data = dict(
train=dict(classes=classes),
val=dict(classes=classes),
test=dict(classes=classes))
注意事项
- 空样本过滤行为在v2.5.0前后有变化,需注意版本兼容性
- 中间格式数据不包含类别名,使用CustomDataset时需离线处理空样本
- 类别平衡数据集和重复数据集的评估功能暂不支持
结语
通过本文介绍的自定义数据集方法,开发者可以灵活地将各种3D数据源集成到NotACracker/COTR项目中。建议根据数据特点选择合适的实现方案,平衡开发效率与系统性能。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
239
2.36 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
216
291
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
仓颉编程语言运行时与标准库。
Cangjie
122
97
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
998
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
589
115
Ascend Extension for PyTorch
Python
77
110
仓颉编程语言提供了 stdx 模块,该模块提供了网络、安全等领域的通用能力。
Cangjie
80
55