NotACracker/COTR项目教程:深度自定义运行时配置指南
2025-07-04 02:10:28作者:滑思眉Philip
前言
在NotACracker/COTR项目的实际应用中,开发者经常需要根据具体任务需求对训练过程进行深度定制。本文将全面介绍如何在该项目中自定义运行时配置,包括优化器设置、训练规程、工作流以及钩子机制等核心内容,帮助开发者充分发挥框架潜力。
优化器定制详解
使用内置PyTorch优化器
NotACracker/COTR项目原生支持所有PyTorch实现的优化器,只需简单修改配置文件即可切换:
# 使用ADAM优化器示例
optimizer = dict(type='Adam', lr=0.0003, weight_decay=0.0001)
关键参数说明:
type
:指定优化器类型(SGD/Adam等)lr
:基础学习率,通常需要根据batch size调整weight_decay
:L2正则化系数,防止过拟合
实现自定义优化器
1. 创建优化器类
在项目中创建新的优化器需要继承PyTorch的Optimizer基类:
from mmcv.runner.optimizer import OPTIMIZERS
from torch.optim import Optimizer
@OPTIMIZERS.register_module()
class CustomOptimizer(Optimizer):
def __init__(self, params, a=0.1, b=0.01):
defaults = dict(a=a, b=b)
super().__init__(params, defaults)
def step(self, closure=None):
# 实现优化逻辑
...
2. 注册优化器
通过以下两种方式使系统识别新优化器:
方法一:通过__init__.py导入
# 在mmdet3d/core/optimizer/__init__.py中添加
from .custom_optim import CustomOptimizer
__all__ = ['CustomOptimizer']
方法二:配置文件中直接导入
custom_imports = dict(
imports=['mmdet3d.core.optimizer.custom_optim'],
allow_failed_imports=False
)
3. 配置使用
optimizer = dict(type='CustomOptimizer', a=0.2, b=0.05)
高级优化技巧
- 梯度裁剪:防止梯度爆炸
optimizer_config = dict(
grad_clip=dict(max_norm=35, norm_type=2)
)
- 动态动量调整:配合学习率调度
momentum_config = dict(
policy='cyclic',
target_ratio=(0.85/0.95, 1),
cyclic_times=1,
step_ratio_up=0.4
)
训练规程定制
NotACracker/COTR支持多种学习率调度策略:
多项式衰减
lr_config = dict(
policy='poly',
power=0.9, # 衰减强度
min_lr=1e-4, # 最小学习率
by_epoch=False # 按迭代次数调整
)
余弦退火策略
lr_config = dict(
policy='CosineAnnealing',
warmup='linear', # 预热策略
warmup_iters=1000, # 预热迭代次数
warmup_ratio=0.1, # 起始学习率比例
min_lr=1e-5 # 最小学习率
)
工作流设计
工作流控制训练和验证的执行顺序:
# 标准1:1训练验证交替
workflow = [('train', 1), ('val', 1)]
# 训练2个epoch后验证1次
workflow = [('train', 2), ('val', 1)]
注意事项:
- 验证阶段不更新模型参数
- max_epochs仅控制训练总epoch数
- 验证频率不影响评估钩子的执行时机
钩子机制深度应用
自定义钩子实现
- 创建钩子类:
from mmcv.runner import HOOKS, Hook
@HOOKS.register_module()
class CustomHook(Hook):
def __init__(self, interval=10):
self.interval = interval
def after_train_iter(self, runner):
if runner.iter % self.interval == 0:
# 自定义操作
...
- 注册与使用:
custom_hooks = [
dict(type='CustomHook', interval=20, priority='HIGH')
]
核心系统钩子配置
- 检查点设置:
checkpoint_config = dict(
interval=1, # 保存间隔
max_keep_ckpts=3, # 最大保存数量
save_optimizer=True # 是否保存优化器状态
)
- 日志系统配置:
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')
]
)
- 评估策略:
evaluation = dict(
interval=1,
metric='mAP', # 评估指标
save_best='auto' # 自动保存最佳模型
)
最佳实践建议
-
学习率设置:初始学习率与batch size成正比关系,大batch size需要相应增大学习率
-
梯度裁剪:当使用RNN结构或深层网络时,建议启用梯度裁剪
-
混合精度训练:可结合Apex或PyTorch原生AMP实现加速
-
自定义验证:通过继承BaseDataset实现特定评估逻辑
-
分布式训练:注意钩子在不同进程中的同步问题
通过本文介绍的各种定制方法,开发者可以针对具体任务需求,在NotACracker/COTR项目中实现高度定制化的训练流程,充分发挥深度学习模型的潜力。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0287Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
161
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
198
279

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
535
62

Ascend Extension for PyTorch
Python
50
81

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
556

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1 K
397

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
385
19

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191