NotACracker/COTR项目教程:自定义运行时配置详解
2025-07-04 04:32:21作者:董灵辛Dennis
前言
在NotACracker/COTR项目的使用过程中,合理配置运行时参数对模型训练效果有着至关重要的影响。本文将全面介绍如何在该项目中自定义优化器、训练调度、工作流以及钩子函数等运行时配置,帮助开发者根据实际需求灵活调整训练过程。
优化器配置详解
使用PyTorch内置优化器
NotACracker/COTR项目支持所有PyTorch原生优化器,只需简单修改配置文件中的optimizer
字段即可。例如,要使用Adam优化器:
optimizer = dict(type='Adam', lr=0.0003, weight_decay=0.0001)
学习率(lr)是最常调整的参数,开发者可以根据任务需求直接修改该值。其他参数如weight_decay等也可以根据PyTorch官方文档进行配置。
自定义优化器实现
1. 创建自定义优化器类
在项目中添加自定义优化器需要以下步骤:
- 在
mmdet3d/core/optimizer/
目录下创建新文件(如my_optimizer.py
) - 实现优化器类并注册:
from mmcv.runner.optimizer import OPTIMIZERS
from torch.optim import Optimizer
@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):
def __init__(self, a, b, c):
# 实现初始化逻辑
pass
2. 注册优化器
有两种方式使系统识别自定义优化器:
方法一:通过__init__.py导入
- 在
mmdet3d/core/optimizer/__init__.py
中添加:
from .my_optimizer import MyOptimizer
__all__ = ['MyOptimizer']
- 在
mmdet3d/core/__init__.py
中导入optimizer模块
方法二:通过配置文件导入
custom_imports = dict(imports=['mmdet3d.core.optimizer.my_optimizer'], allow_failed_imports=False)
3. 在配置中使用
配置文件中使用自定义优化器:
optimizer = dict(type='MyOptimizer', a=a_value, b=b_value, c=c_value)
优化器构造器定制
对于需要特殊参数设置的模型(如BatchNorm层的权重衰减),可以通过自定义优化器构造器实现精细控制:
from mmcv.runner.optimizer import OPTIMIZER_BUILDERS
@OPTIMIZER_BUILDERS.register_module()
class MyOptimizerConstructor:
def __init__(self, optimizer_cfg, paramwise_cfg=None):
# 初始化逻辑
pass
def __call__(self, model):
# 返回优化器实例
return my_optimizer
实用训练技巧
- 梯度裁剪:防止梯度爆炸
optimizer_config = dict(
_delete_=True,
grad_clip=dict(max_norm=35, norm_type=2)
)
- 动量调度:配合学习率调度加速收敛
lr_config = dict(
policy='cyclic',
target_ratio=(10, 1e-4),
cyclic_times=1,
step_ratio_up=0.4,
)
momentum_config = dict(
policy='cyclic',
target_ratio=(0.85/0.95, 1),
cyclic_times=1,
step_ratio_up=0.4,
)
训练调度配置
NotACracker/COTR支持多种学习率调度策略:
- Poly策略:
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
- 余弦退火策略:
lr_config = dict(
policy='CosineAnnealing',
warmup='linear',
warmup_iters=1000,
warmup_ratio=1.0/10,
min_lr_ratio=1e-5
)
工作流定制
工作流定义了训练和验证的顺序及轮次。默认配置为:
workflow = [('train', 1)] # 只训练
如需加入验证阶段:
workflow = [('train', 1), ('val', 1)] # 交替进行训练和验证
注意:
- 验证阶段不会更新模型参数
max_epochs
仅控制训练轮次- 两种工作流对EvalHook的影响相同
钩子函数定制
自定义钩子实现
- 创建钩子类:
from mmcv.runner import HOOKS, Hook
@HOOKS.register_module()
class MyHook(Hook):
def __init__(self, a, b):
pass
def before_run(self, runner):
pass
# 实现其他阶段方法...
- 注册钩子:
- 通过__init__.py导入
- 或使用
custom_imports
配置
- 配置使用:
custom_hooks = [
dict(type='MyHook', a=a_value, b=b_value, priority='NORMAL')
]
修改默认运行时钩子
- 检查点配置:
checkpoint_config = dict(interval=1, max_keep_ckpts=5)
- 日志配置:
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')
])
- 评估配置:
evaluation = dict(interval=1, metric='bbox')
结语
通过本文介绍的方法,开发者可以灵活定制NotACracker/COTR项目的运行时配置,包括优化器、学习率策略、工作流程和钩子函数等。合理配置这些参数可以显著提升模型训练效果和开发效率。建议在实际应用中根据具体任务需求进行调优,逐步找到最佳配置方案。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
295
331

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58