NotACracker/COTR项目教程:自定义运行时配置详解
2025-07-04 09:18:57作者:董灵辛Dennis
前言
在NotACracker/COTR项目的使用过程中,合理配置运行时参数对模型训练效果有着至关重要的影响。本文将全面介绍如何在该项目中自定义优化器、训练调度、工作流以及钩子函数等运行时配置,帮助开发者根据实际需求灵活调整训练过程。
优化器配置详解
使用PyTorch内置优化器
NotACracker/COTR项目支持所有PyTorch原生优化器,只需简单修改配置文件中的optimizer字段即可。例如,要使用Adam优化器:
optimizer = dict(type='Adam', lr=0.0003, weight_decay=0.0001)
学习率(lr)是最常调整的参数,开发者可以根据任务需求直接修改该值。其他参数如weight_decay等也可以根据PyTorch官方文档进行配置。
自定义优化器实现
1. 创建自定义优化器类
在项目中添加自定义优化器需要以下步骤:
- 在
mmdet3d/core/optimizer/目录下创建新文件(如my_optimizer.py) - 实现优化器类并注册:
from mmcv.runner.optimizer import OPTIMIZERS
from torch.optim import Optimizer
@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):
def __init__(self, a, b, c):
# 实现初始化逻辑
pass
2. 注册优化器
有两种方式使系统识别自定义优化器:
方法一:通过__init__.py导入
- 在
mmdet3d/core/optimizer/__init__.py中添加:
from .my_optimizer import MyOptimizer
__all__ = ['MyOptimizer']
- 在
mmdet3d/core/__init__.py中导入optimizer模块
方法二:通过配置文件导入
custom_imports = dict(imports=['mmdet3d.core.optimizer.my_optimizer'], allow_failed_imports=False)
3. 在配置中使用
配置文件中使用自定义优化器:
optimizer = dict(type='MyOptimizer', a=a_value, b=b_value, c=c_value)
优化器构造器定制
对于需要特殊参数设置的模型(如BatchNorm层的权重衰减),可以通过自定义优化器构造器实现精细控制:
from mmcv.runner.optimizer import OPTIMIZER_BUILDERS
@OPTIMIZER_BUILDERS.register_module()
class MyOptimizerConstructor:
def __init__(self, optimizer_cfg, paramwise_cfg=None):
# 初始化逻辑
pass
def __call__(self, model):
# 返回优化器实例
return my_optimizer
实用训练技巧
- 梯度裁剪:防止梯度爆炸
optimizer_config = dict(
_delete_=True,
grad_clip=dict(max_norm=35, norm_type=2)
)
- 动量调度:配合学习率调度加速收敛
lr_config = dict(
policy='cyclic',
target_ratio=(10, 1e-4),
cyclic_times=1,
step_ratio_up=0.4,
)
momentum_config = dict(
policy='cyclic',
target_ratio=(0.85/0.95, 1),
cyclic_times=1,
step_ratio_up=0.4,
)
训练调度配置
NotACracker/COTR支持多种学习率调度策略:
- Poly策略:
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
- 余弦退火策略:
lr_config = dict(
policy='CosineAnnealing',
warmup='linear',
warmup_iters=1000,
warmup_ratio=1.0/10,
min_lr_ratio=1e-5
)
工作流定制
工作流定义了训练和验证的顺序及轮次。默认配置为:
workflow = [('train', 1)] # 只训练
如需加入验证阶段:
workflow = [('train', 1), ('val', 1)] # 交替进行训练和验证
注意:
- 验证阶段不会更新模型参数
max_epochs仅控制训练轮次- 两种工作流对EvalHook的影响相同
钩子函数定制
自定义钩子实现
- 创建钩子类:
from mmcv.runner import HOOKS, Hook
@HOOKS.register_module()
class MyHook(Hook):
def __init__(self, a, b):
pass
def before_run(self, runner):
pass
# 实现其他阶段方法...
- 注册钩子:
- 通过__init__.py导入
- 或使用
custom_imports配置
- 配置使用:
custom_hooks = [
dict(type='MyHook', a=a_value, b=b_value, priority='NORMAL')
]
修改默认运行时钩子
- 检查点配置:
checkpoint_config = dict(interval=1, max_keep_ckpts=5)
- 日志配置:
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')
])
- 评估配置:
evaluation = dict(interval=1, metric='bbox')
结语
通过本文介绍的方法,开发者可以灵活定制NotACracker/COTR项目的运行时配置,包括优化器、学习率策略、工作流程和钩子函数等。合理配置这些参数可以显著提升模型训练效果和开发效率。建议在实际应用中根据具体任务需求进行调优,逐步找到最佳配置方案。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92