LW-DETR 开源项目使用教程
2024-08-17 10:27:57作者:郜逊炳
项目介绍
LW-DETR(Light-Weight Detection Transformer)是一个轻量级的实时物体检测模型,它在实时物体检测方面超越了YOLO系列。LW-DETR的架构简单,由ViT编码器、投射器和浅层DETR解码器堆叠而成。该项目利用了先进的训练技巧,如改进的损失函数和预训练,以及交叉的窗口和全局注意力,以降低ViT编码器的复杂性。此外,LW-DETR通过聚合多级特征图和窗口优先的特征图组织方式,提高了特征图的丰富性和计算效率。
项目快速启动
环境准备
首先,确保你已经安装了Python和Git。然后,克隆项目仓库并安装必要的依赖包:
git clone https://github.com/Atten4Vis/LW-DETR.git
cd LW-DETR
pip install -r requirements.txt
下载预训练模型
你可以从Hugging Face下载预训练模型。以下是下载LW-DETR-tiny模型的示例:
wget https://huggingface.co/path/to/LW-DETR-tiny.pth
运行示例代码
以下是一个简单的示例代码,展示如何使用LW-DETR进行物体检测:
import torch
from models import LW_DETR
# 加载预训练模型
model = LW_DETR(pretrained='path/to/LW-DETR-tiny.pth')
# 加载图像
image = torch.rand(1, 3, 640, 640) # 示例图像
# 进行推理
outputs = model(image)
# 处理输出结果
print(outputs)
应用案例和最佳实践
应用案例
LW-DETR在多个领域展现了其优越的性能,特别是在文档和电磁领域的实时检测任务中。例如,在RF100数据集上,LW-DETR-small模型在不同领域的表现优于当前最先进的实时检测器。
最佳实践
- 数据预处理:确保输入图像符合模型要求的尺寸和格式。
- 模型微调:根据具体任务对模型进行微调,以获得更好的性能。
- 性能优化:利用GPU加速推理过程,提高实时检测的效率。
典型生态项目
OVLW-DETR
OVLW-DETR是一个基于LW-DETR的高效开放词汇检测器,它在标准的Zero-Shot LVIS基准上超越了现有的实时开放词汇检测器。OVLW-DETR的源代码和预训练模型即将发布,敬请关注。
其他相关项目
- Group DETR:一个基于组注意力的检测模型。
- ViTDet:一个基于ViT的检测模型。
- Deformable DETR:一个基于可变形注意力的检测模型。
通过这些生态项目,LW-DETR构建了一个强大的实时物体检测生态系统,为用户提供了丰富的选择和灵活的解决方案。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136