GLM-4项目运行OpenAI API服务器时的OOM问题分析与解决方案
问题背景
在GLM-4项目中运行openai_api_server时,许多开发者遇到了CUDA内存不足(OOM)的问题。这个问题通常发生在初始化KV缓存阶段,系统尝试分配显存时失败。从错误日志可以看到,即使GPU仍有35GB可用显存,系统仍报告无法分配606MB或538MB的内存块。
错误现象分析
从错误日志中可以观察到几个关键点:
- 模型加载阶段消耗了17.56GB显存
- 系统尝试分配大量GPU块(34318-38675个)和CPU块(6553个)
- 在初始化KV缓存时失败,报错CUDA OOM
根本原因
这个问题主要由以下几个因素共同导致:
-
显存利用率设置不当:默认的gpu_memory_utilization参数可能设置过高,没有为系统操作预留足够空间。
-
KV缓存分配策略:系统在初始化时会预先分配大量KV缓存块,这些块的总和可能超出实际可用显存。
-
模型规模与硬件限制:GLM-4-9B模型本身较大,在bfloat16精度下需要约17.5GB显存,加上KV缓存后很容易接近常见消费级GPU(如24GB)的极限。
解决方案
经过实践验证,以下几种方法可以有效解决OOM问题:
-
调整显存利用率参数:
- 将gpu_memory_utilization从默认的0.9降低到0.6左右
- 这个参数控制vLLM可以使用的GPU内存比例,降低它可以为系统操作预留更多空间
-
优化模型加载配置:
- 使用更高效的量化方式,如AWQ或GPTQ
- 考虑使用torch.float16代替bfloat16,可以略微减少内存占用
-
调整KV缓存相关参数:
- 减小max_model_len参数(如从8192降到4096)
- 调整block_size参数,减少单个块的大小
-
硬件层面解决方案:
- 使用显存更大的GPU
- 考虑多GPU并行(tensor_parallel_size>1)
最佳实践建议
对于GLM-4-9B模型的部署,建议采用以下配置作为起点:
engine_args = AsyncEngineArgs(
model=MODEL_PATH,
tokenizer=MODEL_PATH,
tensor_parallel_size=1,
dtype="bfloat16", # 或"float16"
trust_remote_code=True,
gpu_memory_utilization=0.6, # 关键调整点
enforce_eager=True,
worker_use_ray=False,
engine_use_ray=False,
disable_log_requests=True,
max_model_len=4096, # 适当降低
enable_chunked_prefill=True,
)
技术原理深入
vLLM引擎在初始化时会执行几个关键内存操作:
- 加载模型权重到显存
- 计算并分配KV缓存块
- 为运行时操作预留空间
当gpu_memory_utilization设置过高时,虽然理论上仍有显存空间,但内存碎片化和系统预留空间不足会导致分配失败。适当降低这个参数可以让内存分配器更灵活地工作。
KV缓存的大小由max_model_len和block_size共同决定。GLM-4作为长上下文模型,默认的max_model_len=8192会要求分配大量缓存块。对于资源有限的部署环境,适当降低这个值可以显著减少内存压力。
总结
GLM-4作为强大的大语言模型,在资源有限的设备上部署时需要特别注意内存管理。通过合理配置显存利用率、优化模型加载参数和调整KV缓存策略,可以在大多数消费级GPU上成功运行openai_api_server。对于不同的硬件环境,建议从保守配置开始,逐步调整参数以达到最佳平衡点。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









