GLM-4项目运行OpenAI API服务器时的OOM问题分析与解决方案
问题背景
在GLM-4项目中运行openai_api_server时,许多开发者遇到了CUDA内存不足(OOM)的问题。这个问题通常发生在初始化KV缓存阶段,系统尝试分配显存时失败。从错误日志可以看到,即使GPU仍有35GB可用显存,系统仍报告无法分配606MB或538MB的内存块。
错误现象分析
从错误日志中可以观察到几个关键点:
- 模型加载阶段消耗了17.56GB显存
- 系统尝试分配大量GPU块(34318-38675个)和CPU块(6553个)
- 在初始化KV缓存时失败,报错CUDA OOM
根本原因
这个问题主要由以下几个因素共同导致:
-
显存利用率设置不当:默认的gpu_memory_utilization参数可能设置过高,没有为系统操作预留足够空间。
-
KV缓存分配策略:系统在初始化时会预先分配大量KV缓存块,这些块的总和可能超出实际可用显存。
-
模型规模与硬件限制:GLM-4-9B模型本身较大,在bfloat16精度下需要约17.5GB显存,加上KV缓存后很容易接近常见消费级GPU(如24GB)的极限。
解决方案
经过实践验证,以下几种方法可以有效解决OOM问题:
-
调整显存利用率参数:
- 将gpu_memory_utilization从默认的0.9降低到0.6左右
- 这个参数控制vLLM可以使用的GPU内存比例,降低它可以为系统操作预留更多空间
-
优化模型加载配置:
- 使用更高效的量化方式,如AWQ或GPTQ
- 考虑使用torch.float16代替bfloat16,可以略微减少内存占用
-
调整KV缓存相关参数:
- 减小max_model_len参数(如从8192降到4096)
- 调整block_size参数,减少单个块的大小
-
硬件层面解决方案:
- 使用显存更大的GPU
- 考虑多GPU并行(tensor_parallel_size>1)
最佳实践建议
对于GLM-4-9B模型的部署,建议采用以下配置作为起点:
engine_args = AsyncEngineArgs(
model=MODEL_PATH,
tokenizer=MODEL_PATH,
tensor_parallel_size=1,
dtype="bfloat16", # 或"float16"
trust_remote_code=True,
gpu_memory_utilization=0.6, # 关键调整点
enforce_eager=True,
worker_use_ray=False,
engine_use_ray=False,
disable_log_requests=True,
max_model_len=4096, # 适当降低
enable_chunked_prefill=True,
)
技术原理深入
vLLM引擎在初始化时会执行几个关键内存操作:
- 加载模型权重到显存
- 计算并分配KV缓存块
- 为运行时操作预留空间
当gpu_memory_utilization设置过高时,虽然理论上仍有显存空间,但内存碎片化和系统预留空间不足会导致分配失败。适当降低这个参数可以让内存分配器更灵活地工作。
KV缓存的大小由max_model_len和block_size共同决定。GLM-4作为长上下文模型,默认的max_model_len=8192会要求分配大量缓存块。对于资源有限的部署环境,适当降低这个值可以显著减少内存压力。
总结
GLM-4作为强大的大语言模型,在资源有限的设备上部署时需要特别注意内存管理。通过合理配置显存利用率、优化模型加载参数和调整KV缓存策略,可以在大多数消费级GPU上成功运行openai_api_server。对于不同的硬件环境,建议从保守配置开始,逐步调整参数以达到最佳平衡点。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00