GLM-4项目在24G显存GPU上的vLLM部署优化实践
2025-06-04 03:25:16作者:魏侃纯Zoe
问题背景
在使用GLM-4项目进行大模型部署时,许多开发者在使用24G显存的GPU(如RTX 4090)运行vLLM推理服务时遇到了显存不足的问题。本文详细分析了这一问题的成因,并提供了经过验证的解决方案。
问题现象分析
当尝试在24G显存的GPU上部署GLM-4模型时,开发者通常会遇到以下两种错误:
- CUDA显存不足错误:直接提示"CUDA out of memory",表明GPU显存无法满足模型加载需求
- KV缓存分配失败:提示"No available memory for the cache blocks",表明显存不足以分配键值缓存
根本原因
经过深入分析,这些问题主要由以下因素导致:
- 模型规模与显存限制:GLM-4-9B模型参数规模较大,在bfloat16精度下需要约18GB显存,加上推理过程中的各种开销,24G显存处于临界状态
- 默认配置不合理:vLLM默认会尝试分配较大的KV缓存空间,在显存有限的GPU上容易触发OOM
- 长序列处理需求:GLM-4支持长上下文(131k tokens),但实际部署时需要根据硬件条件调整
解决方案
经过多次实验验证,我们总结出以下可靠的配置方案:
关键参数调整
engine_args = AsyncEngineArgs(
model=model_dir,
tokenizer=model_dir,
tensor_parallel_size=1,
dtype="bfloat16",
trust_remote_code=True,
gpu_memory_utilization=0.9, # 显存利用率设置为90%
enforce_eager=True,
worker_use_ray=True,
engine_use_ray=False,
disable_log_requests=True,
max_model_len=16384, # 限制最大序列长度为16k
enable_chunked_prefill=True, # 启用分块预填充
max_num_batched_tokens=8192 # 限制批量处理的token数量
)
参数说明
- gpu_memory_utilization:建议设置为0.7-0.9之间,表示允许vLLM使用的显存比例
- max_model_len:这是最关键参数,必须设置为16384或更低,限制模型处理的最大序列长度
- enable_chunked_prefill:启用分块处理机制,降低峰值显存需求
- max_num_batched_tokens:限制批量处理的token数量,防止突发高负载导致OOM
实践建议
- 显存监控:在调整参数时,建议使用nvidia-smi监控显存使用情况
- 渐进调整:可以从小值开始逐步增加max_model_len,找到设备的稳定点
- 性能权衡:更小的max_model_len会降低显存需求,但会限制模型处理长文本的能力
- 混合精度:如果显存极度紧张,可以考虑使用fp16代替bfloat16
结论
在24G显存的GPU上成功部署GLM-4模型需要精细的资源配置。通过合理设置max_model_len等关键参数,开发者可以在有限硬件条件下实现稳定的模型服务。本文提供的配置方案已在RTX 4090等设备上验证有效,可作为类似环境下的参考标准。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
258
298

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5