GLM-4项目运行OpenAI API服务器时的内存不足问题分析与解决方案
2025-06-03 11:54:14作者:殷蕙予
问题背景
在使用GLM-4项目中的openai_api_server.py脚本时,用户遇到了CUDA内存不足的问题。该问题表现为在尝试加载GLM-4-9B模型时,系统报告GPU内存不足,无法完成模型加载过程。值得注意的是,同一环境下的trans_cli_demo.py脚本可以正常运行,这表明问题可能与API服务器的特定配置有关。
问题分析
内存需求评估
GLM-4-9B模型作为90亿参数的大语言模型,其内存需求相当可观。在默认配置下,模型加载需要:
- 单精度浮点(FP32)约36GB显存
- 半精度浮点(FP16)约18GB显存
- 混合精度(bfloat16)约18GB显存
用户环境中配置了三张P40显卡,每张P40拥有24GB显存。理论上,如果合理分配资源,应该能够满足模型运行需求。
配置问题
检查openai_api_server.py中的默认配置,发现以下潜在问题点:
- tensor_parallel_size设置为1,意味着模型仅使用单张GPU,无法利用多卡优势
- gpu_memory_utilization设置为0.9,接近单卡上限
- 未明确指定使用的GPU设备
解决方案
多GPU并行计算
通过调整tensor_parallel_size参数,可以实现模型在多张GPU上的分布式计算:
engine_args = AsyncEngineArgs(
model=MODEL_PATH,
tokenizer=MODEL_PATH,
tensor_parallel_size=3, # 使用3张GPU
dtype="bfloat16",
trust_remote_code=True,
gpu_memory_utilization=0.9,
enforce_eager=True,
worker_use_ray=False,
engine_use_ray=False,
disable_log_requests=True,
max_model_len=MAX_MODEL_LENGTH,
)
GPU设备选择
在Linux环境下,可以通过设置CUDA_VISIBLE_DEVICES环境变量来指定使用的GPU设备:
export CUDA_VISIBLE_DEVICES=0,1,2 # 使用前三张GPU
python openai_api_server.py
内存优化建议
- 降低内存利用率:将gpu_memory_utilization从0.9调整为0.8或更低,为系统预留更多缓冲空间
- 使用量化技术:考虑使用4-bit或8-bit量化版本模型,可显著降低显存需求
- 调整批处理大小:在API服务器配置中减少max_batch_size参数值
技术原理
张量并行(Tensor Parallelism)
张量并行是一种模型并行技术,它将模型的参数和计算分布到多个GPU上。在GLM-4的实现中:
- 模型的不同层可以分配到不同GPU
- 每个GPU只保存部分模型参数
- 前向和后向传播过程中需要GPU间通信
CUDA内存管理
CUDA内存管理的关键点:
- 显存分配策略:PyTorch默认采用贪心算法分配显存
- 内存碎片:频繁的显存分配释放可能导致碎片化
- 缓存机制:CUDA内核和内存操作有缓存机制,可能占用额外显存
最佳实践
- 监控GPU使用情况:在运行前使用nvidia-smi命令检查GPU状态
- 渐进式调优:从小batch size开始,逐步增加直到找到最优值
- 日志分析:关注vLLM引擎的日志输出,了解内存分配细节
- 版本匹配:确保CUDA、PyTorch和vLLM版本兼容
总结
GLM-4作为大型语言模型,在部署API服务时需要特别注意GPU资源管理。通过合理配置张量并行参数、优化内存利用率以及正确设置GPU设备,可以有效解决内存不足的问题。对于资源有限的环境,建议考虑使用量化模型或调整服务参数来平衡性能和资源消耗。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
24
7
暂无简介
Dart
614
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
260
92
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
475
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255