GLM-4项目运行OpenAI API服务器时的内存不足问题分析与解决方案
2025-06-03 22:57:55作者:殷蕙予
问题背景
在使用GLM-4项目中的openai_api_server.py脚本时,用户遇到了CUDA内存不足的问题。该问题表现为在尝试加载GLM-4-9B模型时,系统报告GPU内存不足,无法完成模型加载过程。值得注意的是,同一环境下的trans_cli_demo.py脚本可以正常运行,这表明问题可能与API服务器的特定配置有关。
问题分析
内存需求评估
GLM-4-9B模型作为90亿参数的大语言模型,其内存需求相当可观。在默认配置下,模型加载需要:
- 单精度浮点(FP32)约36GB显存
- 半精度浮点(FP16)约18GB显存
- 混合精度(bfloat16)约18GB显存
用户环境中配置了三张P40显卡,每张P40拥有24GB显存。理论上,如果合理分配资源,应该能够满足模型运行需求。
配置问题
检查openai_api_server.py中的默认配置,发现以下潜在问题点:
- tensor_parallel_size设置为1,意味着模型仅使用单张GPU,无法利用多卡优势
- gpu_memory_utilization设置为0.9,接近单卡上限
- 未明确指定使用的GPU设备
解决方案
多GPU并行计算
通过调整tensor_parallel_size参数,可以实现模型在多张GPU上的分布式计算:
engine_args = AsyncEngineArgs(
model=MODEL_PATH,
tokenizer=MODEL_PATH,
tensor_parallel_size=3, # 使用3张GPU
dtype="bfloat16",
trust_remote_code=True,
gpu_memory_utilization=0.9,
enforce_eager=True,
worker_use_ray=False,
engine_use_ray=False,
disable_log_requests=True,
max_model_len=MAX_MODEL_LENGTH,
)
GPU设备选择
在Linux环境下,可以通过设置CUDA_VISIBLE_DEVICES环境变量来指定使用的GPU设备:
export CUDA_VISIBLE_DEVICES=0,1,2 # 使用前三张GPU
python openai_api_server.py
内存优化建议
- 降低内存利用率:将gpu_memory_utilization从0.9调整为0.8或更低,为系统预留更多缓冲空间
- 使用量化技术:考虑使用4-bit或8-bit量化版本模型,可显著降低显存需求
- 调整批处理大小:在API服务器配置中减少max_batch_size参数值
技术原理
张量并行(Tensor Parallelism)
张量并行是一种模型并行技术,它将模型的参数和计算分布到多个GPU上。在GLM-4的实现中:
- 模型的不同层可以分配到不同GPU
- 每个GPU只保存部分模型参数
- 前向和后向传播过程中需要GPU间通信
CUDA内存管理
CUDA内存管理的关键点:
- 显存分配策略:PyTorch默认采用贪心算法分配显存
- 内存碎片:频繁的显存分配释放可能导致碎片化
- 缓存机制:CUDA内核和内存操作有缓存机制,可能占用额外显存
最佳实践
- 监控GPU使用情况:在运行前使用nvidia-smi命令检查GPU状态
- 渐进式调优:从小batch size开始,逐步增加直到找到最优值
- 日志分析:关注vLLM引擎的日志输出,了解内存分配细节
- 版本匹配:确保CUDA、PyTorch和vLLM版本兼容
总结
GLM-4作为大型语言模型,在部署API服务时需要特别注意GPU资源管理。通过合理配置张量并行参数、优化内存利用率以及正确设置GPU设备,可以有效解决内存不足的问题。对于资源有限的环境,建议考虑使用量化模型或调整服务参数来平衡性能和资源消耗。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328