Strands Agent 与 MCP 工具集成开发指南
2025-06-03 03:58:10作者:卓炯娓
概述
在现代人工智能应用开发中,如何有效地扩展智能代理(Agent)的能力是一个关键问题。Strands Agent 通过集成 Model Context Protocol (MCP) 工具,为开发者提供了一种标准化的方式来扩展代理功能。本文将深入探讨如何使用 Strands Agent 与 MCP 工具进行集成开发。
MCP 协议基础
MCP (Model Context Protocol) 是一个开放协议,它标准化了应用程序如何向大型语言模型(LLM)提供上下文信息。该协议的核心价值在于:
- 标准化接口:为不同工具和服务提供统一的交互方式
- 扩展性:允许开发者轻松添加新功能到现有代理中
- 灵活性:支持多种通信模式和传输协议
环境准备
在开始集成开发前,需要确保满足以下条件:
- Python 3.10 或更高版本
- 有效的 AWS 账户(如需使用 AWS 相关服务)
- Amazon Bedrock 上已启用 Anthropic Claude 3.7 模型
安装必要的依赖包:
pip install -r requirements.txt
MCP 传输协议详解
MCP 支持多种传输协议,开发者应根据具体场景选择合适的协议:
1. 标准输入输出(stdio)传输
适用场景:
- 本地开发和测试
- 命令行工具集成
- 简单的脚本交互
特点:
- 实现简单,无需网络配置
- 适合单机环境
- 调试方便
2. Streamable HTTP 传输
适用场景:
- 分布式系统集成
- 需要服务化部署的场景
- 多客户端并发访问
特点:
- 支持服务器推送(Server-Sent Events)
- 可扩展性强
- 适合生产环境部署
实战:集成 AWS 文档 MCP 服务器
1. 使用 stdio 传输连接
from mcp import StdioServerParameters, stdio_client
from strands.tools.mcp import MCPClient
# 创建 stdio 传输的 MCP 客户端
stdio_mcp_client = MCPClient(
lambda: stdio_client(
StdioServerParameters(
command="uvx",
args=["awslabs.aws-documentation-mcp-server@latest"]
)
)
)
2. 创建代理并使用工具
with stdio_mcp_client:
# 获取 MCP 服务器提供的工具列表
tools = stdio_mcp_client.list_tools_sync()
# 创建代理实例
agent = Agent(tools=tools)
# 使用代理查询 AWS Bedrock 定价信息
response = agent("What is Amazon Bedrock pricing model. Be concise.")
创建自定义 MCP 服务器
开发者可以创建自己的 MCP 服务器来提供定制化工具:
from mcp.server import FastMCP
import time
# 创建 MCP 服务器实例
mcp = FastMCP("Calculator Server")
# 定义计算器工具
@mcp.tool(description="Calculator tool which performs calculations")
def calculator(x: int, y: int) -> int:
return x + y
# 定义长时间运行工具
@mcp.tool(description="This is a long running tool")
def long_running_tool(name: str) -> str:
time.sleep(25)
return f"Hello {name}"
# 启动服务器
mcp.run(transport="streamable-http", mount_path="mcp")
高级集成技巧
1. 多 MCP 服务器集成
Strands Agent 支持同时连接多个 MCP 服务器:
# 连接 AWS 文档 MCP 服务器
aws_docs_mcp_client = MCPClient(
lambda: stdio_client(
StdioServerParameters(
command="uvx",
args=["awslabs.aws-documentation-mcp-server@latest"]
)
)
)
# 连接 CDK MCP 服务器
cdk_mcp_client = MCPClient(
lambda: stdio_client(
StdioServerParameters(
command="uvx",
args=["awslabs.cdk-mcp-server@latest"]
)
)
)
# 创建支持多服务器的代理
with aws_docs_mcp_client, cdk_mcp_client:
tools = aws_docs_mcp_client.list_tools_sync() + cdk_mcp_client.list_tools_sync()
agent = Agent(tools=tools, max_parallel_tools=2)
response = agent(
"What is Amazon Bedrock pricing model. Be concise. Also what are the best practices related to CDK?"
)
2. 直接调用工具
在某些场景下,开发者可能需要直接调用工具而不通过代理:
query = {"x": 10, "y": 20}
with streamable_http_mcp_client:
result = streamable_http_mcp_client.call_tool_sync(
tool_use_id="tool-123",
name="calculator",
arguments=query
)
print(f"Calculation result: {result['content'][0]['text']}")
3. 超时控制
对于可能长时间运行的工具,可以设置超时限制:
with streamable_http_mcp_client:
try:
result = streamable_http_mcp_client.call_tool_sync(
tool_use_id="tool-123",
name="long_running_tool",
arguments={"name": "Amazon"},
read_timeout_seconds=timedelta(seconds=30),
)
# 处理结果...
except Exception as e:
print(f"Tool call timed out or failed: {str(e)}")
最佳实践
-
工具设计原则:
- 保持工具功能单一
- 提供清晰的描述文档
- 考虑错误处理场景
-
性能优化:
- 合理设置 max_parallel_tools 参数
- 对耗时操作实现异步处理
- 考虑工具调用的缓存策略
-
安全考虑:
- 验证工具输入参数
- 限制敏感工具的访问权限
- 实现适当的日志记录
总结
通过本文,我们全面了解了如何使用 Strands Agent 与 MCP 工具进行集成开发。从基础的环境准备到高级的多服务器集成,开发者可以根据实际需求选择合适的集成方式。MCP 协议为智能代理的功能扩展提供了标准化途径,而 Strands Agent 则简化了这一集成过程,使开发者能够更专注于业务逻辑的实现。
在实际应用中,建议开发者:
- 从简单场景开始,逐步增加复杂度
- 充分测试工具在不同场景下的表现
- 监控工具使用情况,持续优化性能
通过合理利用 MCP 工具,开发者可以显著增强 Strands Agent 的能力,构建出更加强大和灵活的智能应用。
登录后查看全文
热门项目推荐
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TypeScript039RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统Vue0417arkanalyzer
方舟分析器:面向ArkTS语言的静态程序分析框架TypeScript041GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。03PowerWechat
PowerWechat是一款基于WeChat SDK for Golang,支持小程序、微信支付、企业微信、公众号等全微信生态Go00openGauss-server
openGauss kernel ~ openGauss is an open source relational database management systemC++0146
热门内容推荐
1 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp音乐播放器项目中的函数调用问题解析4 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 5 freeCodeCamp博客页面工作坊中的断言方法优化建议6 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析7 freeCodeCamp论坛排行榜项目中的错误日志规范要求8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp课程视频测验中的Tab键导航问题解析
最新内容推荐
Visual-RFT项目中模型路径差异的技术解析 Microcks在OpenShift上部署Keycloak PostgreSQL的权限问题解析 Beyla项目中的HTTP2连接检测问题解析 RaspberryMatic项目中HmIP-BWTH温控器假期模式设置问题分析 Lets-Plot 库中条形图标签在坐标轴反转时的定位问题解析 BedrockConnect项目版本兼容性问题解析与解决方案 LiquidJS 10.21.0版本新增数组过滤功能解析 Mink项目中Selenium驱动切换iframe的兼容性问题分析 Lichess移动端盲棋模式字符串优化解析 sbctl验证功能JSON输出问题解析
项目优选
收起

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
15

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
577
417

React Native鸿蒙化仓库
C++
125
208

openGauss kernel ~ openGauss is an open source relational database management system
C++
77
146

FOLib 是一个为Ai研发而生的、全语言制品库和供应链服务平台
Java
110
6

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
444
39

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
693
91

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
80
13

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
98
253

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
359
342