使用Strands Agent与OpenAI模型构建智能代理的入门指南
2025-06-03 21:57:10作者:范靓好Udolf
概述
Strands Agent是一个采用模型驱动方法的SDK,能够帮助开发者用少量代码构建和运行AI代理。该框架支持多种模型提供商,可以灵活地部署在任何环境中。本文将重点介绍如何通过Strands Agent SDK集成OpenAI模型(以Azure托管的gpt-4.1-mini为例)来构建一个具备天气查询和时间查询功能的智能代理。
技术架构解析
Strands Agent采用了简洁而强大的架构设计:
- 模型层:通过LiteLLM统一接口支持多种LLM提供商
- 工具层:可扩展的工具集,为代理提供特定功能
- 代理核心:协调模型推理与工具调用的中枢系统
这种分层架构使得开发者可以灵活地替换模型提供商或添加新工具,而不影响整体系统稳定性。
环境准备
基础要求
- Python 3.10或更高版本
- Azure账户权限
- 可访问gpt-4.1-mini模型的服务端点
依赖安装
首先需要安装必要的Python包:
pip install -r requirements.txt
核心代码实现
1. 导入依赖
import os
from datetime import datetime
from datetime import timezone as tz
from typing import Any
from zoneinfo import ZoneInfo
from strands import Agent, tool
from strands.models.litellm import LiteLLMModel
2. 配置Azure API密钥
os.environ["AZURE_API_KEY"] = "<YOUR_API_KEY>"
os.environ["AZURE_API_BASE"] = "<YOUR_API_BASE>"
os.environ["AZURE_API_VERSION"] = "<YOUR_API_VERSION>"
3. 定义工具函数
我们创建两个示例工具来展示代理能力:
@tool
def current_time(timezone: str = "UTC") -> str:
"""获取指定时区的当前时间"""
if timezone.upper() == "UTC":
timezone_obj: Any = tz.utc
else:
timezone_obj = ZoneInfo(timezone)
return datetime.now(timezone_obj).isoformat()
@tool
def current_weather(city: str) -> str:
"""获取指定城市的天气情况(示例返回固定值)"""
return "sunny"
4. 配置模型参数
model = "azure/gpt-4.1-mini"
litellm_model = LiteLLMModel(
model_id=model, params={"max_tokens": 32000, "temperature": 0.7}
)
5. 创建代理实例
system_prompt = "You are a simple agent that can tell the time and the weather"
agent = Agent(
model=litellm_model,
system_prompt=system_prompt,
tools=[current_time, current_weather],
)
测试与验证
执行查询
results = agent("What time is it in Seattle? And how is the weather?")
分析结果
- 查看完整的对话历史:
agent.messages
- 检查资源使用情况:
results.metrics
最佳实践建议
- 模型选择:根据任务复杂度选择合适的模型,简单任务可使用轻量级模型
- 温度参数:对于确定性任务,建议降低temperature值(如0.2-0.5)
- 工具设计:保持工具函数单一职责,提供清晰的文档字符串
- 错误处理:在实际应用中应增强工具函数的错误处理能力
扩展思考
通过这个基础示例,开发者可以进一步探索:
- 集成更复杂的工具链(如数据库查询、API调用)
- 实现多代理协作系统
- 添加记忆机制实现上下文感知
- 开发自定义监控和日志系统
Strands Agent的模块化设计为这些高级功能提供了良好的扩展基础。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++030Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
159
2.01 K

deepin linux kernel
C
22
6

Ascend Extension for PyTorch
Python
42
74

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
522
53

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
946
556

React Native鸿蒙化仓库
C++
197
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
995
396

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
364
13

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
71