使用Strands Agent与OpenAI模型构建智能代理的入门指南
2025-06-03 19:51:13作者:范靓好Udolf
概述
Strands Agent是一个采用模型驱动方法的SDK,能够帮助开发者用少量代码构建和运行AI代理。该框架支持多种模型提供商,可以灵活地部署在任何环境中。本文将重点介绍如何通过Strands Agent SDK集成OpenAI模型(以Azure托管的gpt-4.1-mini为例)来构建一个具备天气查询和时间查询功能的智能代理。
技术架构解析
Strands Agent采用了简洁而强大的架构设计:
- 模型层:通过LiteLLM统一接口支持多种LLM提供商
- 工具层:可扩展的工具集,为代理提供特定功能
- 代理核心:协调模型推理与工具调用的中枢系统
这种分层架构使得开发者可以灵活地替换模型提供商或添加新工具,而不影响整体系统稳定性。
环境准备
基础要求
- Python 3.10或更高版本
- Azure账户权限
- 可访问gpt-4.1-mini模型的服务端点
依赖安装
首先需要安装必要的Python包:
pip install -r requirements.txt
核心代码实现
1. 导入依赖
import os
from datetime import datetime
from datetime import timezone as tz
from typing import Any
from zoneinfo import ZoneInfo
from strands import Agent, tool
from strands.models.litellm import LiteLLMModel
2. 配置Azure API密钥
os.environ["AZURE_API_KEY"] = "<YOUR_API_KEY>"
os.environ["AZURE_API_BASE"] = "<YOUR_API_BASE>"
os.environ["AZURE_API_VERSION"] = "<YOUR_API_VERSION>"
3. 定义工具函数
我们创建两个示例工具来展示代理能力:
@tool
def current_time(timezone: str = "UTC") -> str:
"""获取指定时区的当前时间"""
if timezone.upper() == "UTC":
timezone_obj: Any = tz.utc
else:
timezone_obj = ZoneInfo(timezone)
return datetime.now(timezone_obj).isoformat()
@tool
def current_weather(city: str) -> str:
"""获取指定城市的天气情况(示例返回固定值)"""
return "sunny"
4. 配置模型参数
model = "azure/gpt-4.1-mini"
litellm_model = LiteLLMModel(
model_id=model, params={"max_tokens": 32000, "temperature": 0.7}
)
5. 创建代理实例
system_prompt = "You are a simple agent that can tell the time and the weather"
agent = Agent(
model=litellm_model,
system_prompt=system_prompt,
tools=[current_time, current_weather],
)
测试与验证
执行查询
results = agent("What time is it in Seattle? And how is the weather?")
分析结果
- 查看完整的对话历史:
agent.messages
- 检查资源使用情况:
results.metrics
最佳实践建议
- 模型选择:根据任务复杂度选择合适的模型,简单任务可使用轻量级模型
- 温度参数:对于确定性任务,建议降低temperature值(如0.2-0.5)
- 工具设计:保持工具函数单一职责,提供清晰的文档字符串
- 错误处理:在实际应用中应增强工具函数的错误处理能力
扩展思考
通过这个基础示例,开发者可以进一步探索:
- 集成更复杂的工具链(如数据库查询、API调用)
- 实现多代理协作系统
- 添加记忆机制实现上下文感知
- 开发自定义监控和日志系统
Strands Agent的模块化设计为这些高级功能提供了良好的扩展基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249