使用Strands Agent与OpenAI模型构建智能代理的入门指南
2025-06-03 20:13:18作者:范靓好Udolf
概述
Strands Agent是一个采用模型驱动方法的SDK,能够帮助开发者用少量代码构建和运行AI代理。该框架支持多种模型提供商,可以灵活地部署在任何环境中。本文将重点介绍如何通过Strands Agent SDK集成OpenAI模型(以Azure托管的gpt-4.1-mini为例)来构建一个具备天气查询和时间查询功能的智能代理。
技术架构解析
Strands Agent采用了简洁而强大的架构设计:
- 模型层:通过LiteLLM统一接口支持多种LLM提供商
- 工具层:可扩展的工具集,为代理提供特定功能
- 代理核心:协调模型推理与工具调用的中枢系统
这种分层架构使得开发者可以灵活地替换模型提供商或添加新工具,而不影响整体系统稳定性。
环境准备
基础要求
- Python 3.10或更高版本
- Azure账户权限
- 可访问gpt-4.1-mini模型的服务端点
依赖安装
首先需要安装必要的Python包:
pip install -r requirements.txt
核心代码实现
1. 导入依赖
import os
from datetime import datetime
from datetime import timezone as tz
from typing import Any
from zoneinfo import ZoneInfo
from strands import Agent, tool
from strands.models.litellm import LiteLLMModel
2. 配置Azure API密钥
os.environ["AZURE_API_KEY"] = "<YOUR_API_KEY>"
os.environ["AZURE_API_BASE"] = "<YOUR_API_BASE>"
os.environ["AZURE_API_VERSION"] = "<YOUR_API_VERSION>"
3. 定义工具函数
我们创建两个示例工具来展示代理能力:
@tool
def current_time(timezone: str = "UTC") -> str:
"""获取指定时区的当前时间"""
if timezone.upper() == "UTC":
timezone_obj: Any = tz.utc
else:
timezone_obj = ZoneInfo(timezone)
return datetime.now(timezone_obj).isoformat()
@tool
def current_weather(city: str) -> str:
"""获取指定城市的天气情况(示例返回固定值)"""
return "sunny"
4. 配置模型参数
model = "azure/gpt-4.1-mini"
litellm_model = LiteLLMModel(
model_id=model, params={"max_tokens": 32000, "temperature": 0.7}
)
5. 创建代理实例
system_prompt = "You are a simple agent that can tell the time and the weather"
agent = Agent(
model=litellm_model,
system_prompt=system_prompt,
tools=[current_time, current_weather],
)
测试与验证
执行查询
results = agent("What time is it in Seattle? And how is the weather?")
分析结果
- 查看完整的对话历史:
agent.messages
- 检查资源使用情况:
results.metrics
最佳实践建议
- 模型选择:根据任务复杂度选择合适的模型,简单任务可使用轻量级模型
- 温度参数:对于确定性任务,建议降低temperature值(如0.2-0.5)
- 工具设计:保持工具函数单一职责,提供清晰的文档字符串
- 错误处理:在实际应用中应增强工具函数的错误处理能力
扩展思考
通过这个基础示例,开发者可以进一步探索:
- 集成更复杂的工具链(如数据库查询、API调用)
- 实现多代理协作系统
- 添加记忆机制实现上下文感知
- 开发自定义监控和日志系统
Strands Agent的模块化设计为这些高级功能提供了良好的扩展基础。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.42 K
Ascend Extension for PyTorch
Python
264
298
暂无简介
Dart
710
169
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
179
65
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
413
React Native鸿蒙化仓库
JavaScript
284
331
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
689
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
422
130