ESM3蛋白质结构预测中的置信度指标解析
2025-07-06 10:13:27作者:晏闻田Solitary
在蛋白质结构预测领域,ESM3作为一款先进的生成模型,不仅能够预测蛋白质的三维结构,还能提供关键的置信度评估指标。这些指标对于研究人员判断预测结果的可靠性至关重要。
置信度指标的重要性
在蛋白质结构预测中,模型通常会输出两个核心置信度指标:
-
pTM (predicted TM-score):用于评估预测结构与真实结构之间的拓扑相似性,取值范围在0-1之间,值越高表示预测结构与真实结构越接近。
-
pLDDT (predicted Local Distance Difference Test):局部距离差异测试分数,用于评估每个残基的局部结构准确性,通常取值在0-100之间,分数越高表示该残基位置的结构预测越可靠。
ESM3中的置信度获取方法
使用ESM3进行蛋白质结构预测后,可以通过简单的Python代码获取这些置信度指标:
from esm.models.esm3 import ESM3
from esm.sdk.api import ESM3InferenceClient, ESMProtein, GenerationConfig
# 初始化模型
model = ESM3InferenceClient.from_pretrained("esm3_sm_open_v1").to("cuda")
# 准备蛋白质序列
prompt = "___________________________________________________DQATSLRILNNGHAFNVEFDDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTVDKKKYAAELHLVHWNTKYGDFGKAVQQPDGLAVLGIFLKVGSAKPGLQKVVDVLDSIKTKGKSADFTNFDPRGLLPESLDYWTYPGSLTTPP___________________________________________________________"
protein = ESMProtein(sequence=prompt)
# 生成序列和结构
protein = model.generate(protein, GenerationConfig(track="sequence", num_steps=8, temperature=0.7))
protein = model.generate(protein, GenerationConfig(track="structure", num_steps=8))
# 获取置信度指标
print("预测TM分数(pTM):", protein.ptm)
print("局部距离差异测试(pLDDT):", protein.plddt)
指标解读与应用
pTM解读
- 0.5以下:预测结构与真实结构差异较大
- 0.5-0.8:中等相似度
- 0.8以上:高度相似,预测质量较好
pLDDT解读
- 90-100:极高置信度
- 70-90:高置信度
- 50-70:中等置信度
- 低于50:低置信度
研究人员可以利用这些指标:
- 筛选高质量预测结果
- 识别结构中不可靠的区域
- 指导实验验证的优先级
- 评估不同预测方法的性能
技术实现原理
ESM3在生成蛋白质结构时,内部会计算这些置信度指标:
- pTM:通过比较预测结构与训练集中已知结构的统计特性得出
- pLDDT:基于每个残基周围局部环境的预测一致性计算
这些指标的计算融合了深度学习模型的内部特征和统计学习方法,能够较为准确地反映预测结果的可靠性。
最佳实践建议
- 对于关键研究,建议只采纳pTM>0.7且平均pLDDT>70的预测结果
- 关注pLDDT较低的区域,这些区域可能需要额外的实验验证
- 比较不同生成步骤的置信度指标,选择最优的预测结果
- 结合其他验证方法(如能量评估)综合判断预测质量
通过合理利用这些置信度指标,研究人员可以更加科学地评估和应用ESM3的预测结果,提高研究的可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
465

deepin linux kernel
C
22
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
132
185

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
873
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
179
264

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
609
59

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4