ESM3蛋白质结构预测中的置信度指标解析
2025-07-06 17:54:05作者:晏闻田Solitary
在蛋白质结构预测领域,ESM3作为一款先进的生成模型,不仅能够预测蛋白质的三维结构,还能提供关键的置信度评估指标。这些指标对于研究人员判断预测结果的可靠性至关重要。
置信度指标的重要性
在蛋白质结构预测中,模型通常会输出两个核心置信度指标:
-
pTM (predicted TM-score):用于评估预测结构与真实结构之间的拓扑相似性,取值范围在0-1之间,值越高表示预测结构与真实结构越接近。
-
pLDDT (predicted Local Distance Difference Test):局部距离差异测试分数,用于评估每个残基的局部结构准确性,通常取值在0-100之间,分数越高表示该残基位置的结构预测越可靠。
ESM3中的置信度获取方法
使用ESM3进行蛋白质结构预测后,可以通过简单的Python代码获取这些置信度指标:
from esm.models.esm3 import ESM3
from esm.sdk.api import ESM3InferenceClient, ESMProtein, GenerationConfig
# 初始化模型
model = ESM3InferenceClient.from_pretrained("esm3_sm_open_v1").to("cuda")
# 准备蛋白质序列
prompt = "___________________________________________________DQATSLRILNNGHAFNVEFDDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTVDKKKYAAELHLVHWNTKYGDFGKAVQQPDGLAVLGIFLKVGSAKPGLQKVVDVLDSIKTKGKSADFTNFDPRGLLPESLDYWTYPGSLTTPP___________________________________________________________"
protein = ESMProtein(sequence=prompt)
# 生成序列和结构
protein = model.generate(protein, GenerationConfig(track="sequence", num_steps=8, temperature=0.7))
protein = model.generate(protein, GenerationConfig(track="structure", num_steps=8))
# 获取置信度指标
print("预测TM分数(pTM):", protein.ptm)
print("局部距离差异测试(pLDDT):", protein.plddt)
指标解读与应用
pTM解读
- 0.5以下:预测结构与真实结构差异较大
- 0.5-0.8:中等相似度
- 0.8以上:高度相似,预测质量较好
pLDDT解读
- 90-100:极高置信度
- 70-90:高置信度
- 50-70:中等置信度
- 低于50:低置信度
研究人员可以利用这些指标:
- 筛选高质量预测结果
- 识别结构中不可靠的区域
- 指导实验验证的优先级
- 评估不同预测方法的性能
技术实现原理
ESM3在生成蛋白质结构时,内部会计算这些置信度指标:
- pTM:通过比较预测结构与训练集中已知结构的统计特性得出
- pLDDT:基于每个残基周围局部环境的预测一致性计算
这些指标的计算融合了深度学习模型的内部特征和统计学习方法,能够较为准确地反映预测结果的可靠性。
最佳实践建议
- 对于关键研究,建议只采纳pTM>0.7且平均pLDDT>70的预测结果
- 关注pLDDT较低的区域,这些区域可能需要额外的实验验证
- 比较不同生成步骤的置信度指标,选择最优的预测结果
- 结合其他验证方法(如能量评估)综合判断预测质量
通过合理利用这些置信度指标,研究人员可以更加科学地评估和应用ESM3的预测结果,提高研究的可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
终极Emoji表情配置指南:从config.yaml到一键部署全流程如何用Aider AI助手快速开发游戏:从Pong到2048的完整指南从崩溃到重生:Anki参数重置功能深度优化方案 RuoYi-Cloud-Plus 微服务通用权限管理系统技术文档 GoldenLayout 布局配置完全指南 Tencent Cloud IM Server SDK Java 技术文档 解决JumpServer v4.10.1版本Windows发布机部署失败问题 最完整2025版!SeedVR2模型家族(3B/7B)选型与性能优化指南2025微信机器人新范式:从消息自动回复到智能助理的进化之路3分钟搞定!团子翻译器接入Gemini模型超详细指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350