ESM3蛋白质结构预测中的置信度指标解析
2025-07-06 11:39:26作者:晏闻田Solitary
在蛋白质结构预测领域,ESM3作为一款先进的生成模型,不仅能够预测蛋白质的三维结构,还能提供关键的置信度评估指标。这些指标对于研究人员判断预测结果的可靠性至关重要。
置信度指标的重要性
在蛋白质结构预测中,模型通常会输出两个核心置信度指标:
-
pTM (predicted TM-score):用于评估预测结构与真实结构之间的拓扑相似性,取值范围在0-1之间,值越高表示预测结构与真实结构越接近。
-
pLDDT (predicted Local Distance Difference Test):局部距离差异测试分数,用于评估每个残基的局部结构准确性,通常取值在0-100之间,分数越高表示该残基位置的结构预测越可靠。
ESM3中的置信度获取方法
使用ESM3进行蛋白质结构预测后,可以通过简单的Python代码获取这些置信度指标:
from esm.models.esm3 import ESM3
from esm.sdk.api import ESM3InferenceClient, ESMProtein, GenerationConfig
# 初始化模型
model = ESM3InferenceClient.from_pretrained("esm3_sm_open_v1").to("cuda")
# 准备蛋白质序列
prompt = "___________________________________________________DQATSLRILNNGHAFNVEFDDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTVDKKKYAAELHLVHWNTKYGDFGKAVQQPDGLAVLGIFLKVGSAKPGLQKVVDVLDSIKTKGKSADFTNFDPRGLLPESLDYWTYPGSLTTPP___________________________________________________________"
protein = ESMProtein(sequence=prompt)
# 生成序列和结构
protein = model.generate(protein, GenerationConfig(track="sequence", num_steps=8, temperature=0.7))
protein = model.generate(protein, GenerationConfig(track="structure", num_steps=8))
# 获取置信度指标
print("预测TM分数(pTM):", protein.ptm)
print("局部距离差异测试(pLDDT):", protein.plddt)
指标解读与应用
pTM解读
- 0.5以下:预测结构与真实结构差异较大
- 0.5-0.8:中等相似度
- 0.8以上:高度相似,预测质量较好
pLDDT解读
- 90-100:极高置信度
- 70-90:高置信度
- 50-70:中等置信度
- 低于50:低置信度
研究人员可以利用这些指标:
- 筛选高质量预测结果
- 识别结构中不可靠的区域
- 指导实验验证的优先级
- 评估不同预测方法的性能
技术实现原理
ESM3在生成蛋白质结构时,内部会计算这些置信度指标:
- pTM:通过比较预测结构与训练集中已知结构的统计特性得出
- pLDDT:基于每个残基周围局部环境的预测一致性计算
这些指标的计算融合了深度学习模型的内部特征和统计学习方法,能够较为准确地反映预测结果的可靠性。
最佳实践建议
- 对于关键研究,建议只采纳pTM>0.7且平均pLDDT>70的预测结果
- 关注pLDDT较低的区域,这些区域可能需要额外的实验验证
- 比较不同生成步骤的置信度指标,选择最优的预测结果
- 结合其他验证方法(如能量评估)综合判断预测质量
通过合理利用这些置信度指标,研究人员可以更加科学地评估和应用ESM3的预测结果,提高研究的可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30