Qwen2.5-VL视觉定位技术解析:坐标归一化与图像缩放策略演进
在视觉语言模型(VLM)领域,Qwen系列模型一直处于技术前沿。本文将从技术实现角度深入分析Qwen2-VL与Qwen2.5-VL在视觉定位(Visual Grounding)方面的关键技术差异,特别是关于坐标归一化处理和图像缩放策略的演进。
坐标归一化策略的演变
在Qwen2-VL版本中,模型采用了传统的坐标归一化方法,将所有边界框坐标归一化到[0,1000)的范围内。这种处理方式在计算机视觉领域较为常见,其优势在于:
- 统一了不同分辨率图像的坐标表示
- 简化了模型训练过程
- 便于跨数据集的应用
然而,随着模型支持更高分辨率的图像处理(如设置max_pixels为163842828),这种固定范围的归一化方式开始显现局限性。当图像尺寸超过1000像素时,归一化过程会导致精度损失。
Qwen2.5-VL对此进行了重要改进,采用了基于实际缩放图像尺寸的绝对坐标系统。这种新策略具有以下特点:
- 坐标值直接对应缩放后图像的实际像素位置
- 避免了固定范围归一化带来的精度限制
- 更自然地处理高分辨率图像
图像缩放处理机制
Qwen2.5-VL引入了smart_resize方法,这是一个智能的图像缩放机制。该方法会根据预设的min_pixels和max_pixels参数,自动确定最佳的缩放比例。其工作流程大致如下:
- 计算原始图像的像素总数
- 根据min_pixels和max_pixels确定目标缩放范围
- 保持宽高比的前提下进行缩放
- 记录缩放后的实际尺寸用于坐标转换
相比之下,Qwen2-VL的缩放逻辑较为简单,没有提供类似的智能缩放接口。这也是导致两个版本在视觉定位处理上存在差异的重要原因之一。
训练与推理中的注意事项
对于需要自定义训练的研究人员,在使用Qwen2.5-VL时需要注意:
- 当处理不同尺寸的图像批次时,无需额外考虑填充(padding)操作
- 可以直接使用smart_resize的输出尺寸来调整真实标注框(ground truth bboxes)
- 保持训练和推理阶段使用相同的min_pixels和max_pixels参数设置
这种设计简化了训练流程,同时确保了模型在不同阶段处理的一致性。
技术演进的意义
从Qwen2-VL到Qwen2.5-VL的坐标处理策略变化,反映了视觉语言模型在精确视觉定位方面的进步:
- 更高的坐标精度:绝对坐标系统避免了归一化带来的精度损失
- 更好的高分辨率支持:直接处理大尺寸图像的能力得到增强
- 更灵活的应用场景:适应不同尺寸输入的能力更强
这种技术演进使得Qwen2.5-VL在需要精确定位的应用场景(如细粒度图像理解、文档分析等)中表现更加出色。
总结
Qwen系列模型在视觉定位技术上的持续改进,展现了其在多模态理解领域的深厚技术积累。从固定范围归一化到基于实际尺寸的绝对坐标,再到智能缩放机制的引入,这些技术进步共同推动了视觉语言模型在实际应用中的表现提升。对于开发者而言,理解这些技术细节有助于更好地利用Qwen模型的强大能力,构建更精确的视觉语言应用。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00