Async-profiler 在同时存在rela.plt和rela.dyn导入表时的启动问题分析
问题背景
在Java性能分析工具Async-profiler的使用过程中,我们发现了一个与动态链接库导入表解析相关的关键问题。当目标共享库(如libjvm.so)中同时包含rela.plt和rela.dyn两种重定位表项时,Async-profiler会无法正确启动,并抛出"Could not set pthread hook"的错误信息。
技术原理
在Linux系统中,动态链接库使用重定位表来处理符号引用。主要有两种类型的重定位表:
- rela.plt:用于过程链接表(PLT)的重定位,主要处理函数调用
- rela.dyn:用于数据引用的重定位,处理全局变量等
Async-profiler在启动时需要解析这些重定位表,特别是要找到关键的线程相关函数如pthread_setspecific的地址,以便设置线程钩子进行性能监控。
问题根源
通过深入分析Async-profiler的源代码,我们发现问题的核心在于符号解析逻辑存在缺陷。具体表现为:
- 在ElfParser::parseDynamicSection()函数中,代码采用if-else分支结构处理重定位表
- 当检测到rela.plt表存在时,会跳过对rela.dyn表的解析
- 但某些关键函数(如pthread_setspecific)可能恰好位于被跳过的rela.dyn表中
这种设计假设所有需要的导入符号都集中在单一的重定位表中,而实际上现代编译器和链接器可能会将符号分散在不同的重定位表中。
问题复现
在实际环境中,我们观察到Liberica JDK 21的libjvm.so中:
- pthread_setspecific位于.rela.dyn表
- 其他关键函数如poll、pthread_create和dlopen则位于.rela.plt表
这种混合分布导致了Async-profiler无法找到pthread_setspecific函数,进而导致线程钩子设置失败。
解决方案
经过分析,我们提出了一个简单的修复方案:将原有的if-else条件判断改为两个独立的if语句,确保无论哪种重定位表存在都会被解析。具体修改如下:
- if (jmprel != NULL && pltrelsz != 0) {
+ if (jmprel != NULL && pltrelsz != 0) {
// 解析.rela.plt表
...
- } else if (rel != NULL && relsz != 0) {
+ }
+ if (rel != NULL && relsz != 0) {
// 解析.rela.dyn表
...
这个修改确保了两类重定位表都会被检查,从而不会遗漏任何关键的函数引用。
技术影响
这个修复对于Async-profiler的稳定性有重要意义:
- 提高了工具对不同编译配置的兼容性
- 确保在各种JDK实现下都能正确设置线程钩子
- 为后续支持更多特殊编译场景奠定了基础
总结
通过对Async-profiler动态链接库解析逻辑的深入分析和修复,我们解决了工具在特定环境下的启动失败问题。这个案例也提醒我们,在编写跨平台的性能分析工具时,需要充分考虑不同编译器和链接器产生的二进制差异,确保工具在各种环境下都能可靠工作。
这个问题的解决不仅提升了Async-profiler的稳定性,也为类似工具的开发提供了有价值的参考经验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00