vLLM项目中GLM-4-32B模型输出为空问题的分析与解决
2025-05-01 12:05:23作者:昌雅子Ethen
在部署和使用vLLM项目时,用户遇到了GLM-4-32B-0414模型输出为空的问题。这个问题主要出现在使用vLLM 0.8.4版本部署GLM-4-32B模型时,模型虽然能正常加载,但在实际推理时无法产生有效输出。
问题现象
用户在Ubuntu服务器上使用vLLM部署GLM-4-32B模型时,观察到以下关键现象:
- 模型能够正常加载,加载过程显示使用了14个safetensors检查点分片
- 模型加载耗时约10.3秒,显存占用约30.45GiB
- API服务能够正常启动并接收请求
- 当通过标准兼容接口发送请求时,返回结果中的message字段为None
- 错误提示显示"NoneType object is not subscriptable"
环境配置
问题出现的环境配置如下:
- vLLM版本:0.8.4
- GPU配置:双A40显卡(每卡48GB显存)
- 部署命令:使用tensor-parallel-size=2进行双卡并行推理
- 最大模型长度设置为32768
- GPU内存利用率设置为0.97
问题根源分析
经过深入分析,发现问题的根源可能来自以下几个方面:
-
模型任务类型识别问题:日志中显示"Defaulting to 'embed'"警告,表明模型可能被错误识别为嵌入模型而非文本生成模型
-
vLLM版本兼容性问题:用户最初通过conda安装的标准vLLM版本可能不完全支持GLM-4模型
-
离线安装方式影响:用户采用从Windows WSL环境复制到Ubuntu服务器的方式安装,可能导致某些编译依赖不完整
解决方案
经过社区讨论和测试,确认以下解决方案有效:
-
使用预发布版本:改用以下命令安装vLLM:
pip install -U vllm --pre --extra-index-url https://wheels.vllm.ai/nightly -
源码编译安装:对于需要离线安装的情况,建议从源码编译安装,确保所有依赖正确编译
-
模型文件验证:确认使用的GLM-4模型文件完整且未被损坏
技术原理深入
vLLM对模型的任务类型识别机制进行了优化。通过检查模型类是否包含特定方法(如compute_logits)来判断是否为文本生成模型。在最新版本中,GLM-4模型类已正确实现了这些接口,因此能够被正确识别为文本生成模型。
对于分布式推理场景,vLLM使用NCCL进行GPU间通信。在问题环境中,日志显示成功检测到NCCL 2.21.5版本,并建立了正确的P2P通信通道,说明分布式通信层工作正常。
最佳实践建议
基于此问题的解决经验,建议用户在部署GLM系列模型时注意以下几点:
- 始终使用vLLM的最新预发布版本或从源码编译
- 部署前验证模型任务类型识别是否正确
- 对于大模型部署,确保GPU间通信正常
- 监控显存使用情况,避免因显存不足导致静默失败
- 对于生产环境,建议建立完整的模型部署验证流程
通过遵循这些建议,可以避免类似问题的发生,确保大语言模型在vLLM上的稳定运行。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110