Unsloth项目中的交叉熵损失与序列打包优化技术解析
2025-05-03 21:57:04作者:韦蓉瑛
在深度学习模型训练过程中,序列数据处理一直是一个重要的优化方向。本文将以Unsloth项目为例,深入探讨序列打包(Packing)技术对交叉熵损失计算的影响及其优化方案。
序列打包技术的背景
传统序列数据处理方式存在明显的资源浪费问题。举例来说,当处理两个长度差异较大的序列时(如长度为7和2的序列),常规方法会分别处理这两个序列,导致计算资源的低效利用。序列打包技术的核心思想是将多个短序列合并成一个长序列,从而提高计算效率。
交叉熵损失计算的传统方式
在传统处理方式下,假设有两个序列:
- 序列A: [a,b,c,d,e,f,g]
- 序列B: [x,y]
交叉熵损失的计算会采用以下方式:
总损失 = 1/2 * (1/7*(loss(a)+...+loss(g)) + 1/2*(loss(x)+loss(y)))
这种计算方式对每个序列内部的token损失进行了长度归一化,然后再对不同序列的损失进行平均。
序列打包后的损失计算变化
采用序列打包技术后,上述两个序列会被合并为:
打包序列: [a,b,c,d,e,f,g,x,y]
此时的损失计算变为:
总损失 = 1/9*(loss(a)+...+loss(y))
这种计算方式直接对所有token的损失进行全局平均,导致不同序列中的token权重发生了变化。
技术优化方案
Unsloth项目团队在后续更新中解决了这个问题。关键优化点包括:
-
损失计算标准化:移除了序列长度相关的权重因子,采用对所有token损失直接求和的方式,避免了序列长度带来的偏差。
-
RoPE内核改进:为了使序列打包技术能够正确工作,需要对RoPE(Rotary Position Embedding)内核进行修改,使其能够接受位置索引参数。
技术影响与意义
这项优化使得Unsloth项目能够:
- 更高效地利用计算资源,减少padding带来的浪费
- 保持模型训练过程的数学一致性
- 在不影响模型性能的前提下提高训练速度
对于使用类似Transformer架构的模型训练,这项技术优化具有重要的参考价值,特别是在处理变长序列数据时,能够显著提升训练效率。
总结
Unsloth项目通过改进序列打包技术和交叉熵损失计算方式,展示了深度学习训练优化的一个重要方向。这种技术改进不仅提高了计算效率,还保证了模型训练的数学严谨性,为相关领域的研究和实践提供了有价值的参考。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
861
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K