Unsloth项目中的交叉熵损失与序列打包优化技术解析
2025-05-03 13:04:04作者:韦蓉瑛
在深度学习模型训练过程中,序列数据处理一直是一个重要的优化方向。本文将以Unsloth项目为例,深入探讨序列打包(Packing)技术对交叉熵损失计算的影响及其优化方案。
序列打包技术的背景
传统序列数据处理方式存在明显的资源浪费问题。举例来说,当处理两个长度差异较大的序列时(如长度为7和2的序列),常规方法会分别处理这两个序列,导致计算资源的低效利用。序列打包技术的核心思想是将多个短序列合并成一个长序列,从而提高计算效率。
交叉熵损失计算的传统方式
在传统处理方式下,假设有两个序列:
- 序列A: [a,b,c,d,e,f,g]
- 序列B: [x,y]
交叉熵损失的计算会采用以下方式:
总损失 = 1/2 * (1/7*(loss(a)+...+loss(g)) + 1/2*(loss(x)+loss(y)))
这种计算方式对每个序列内部的token损失进行了长度归一化,然后再对不同序列的损失进行平均。
序列打包后的损失计算变化
采用序列打包技术后,上述两个序列会被合并为:
打包序列: [a,b,c,d,e,f,g,x,y]
此时的损失计算变为:
总损失 = 1/9*(loss(a)+...+loss(y))
这种计算方式直接对所有token的损失进行全局平均,导致不同序列中的token权重发生了变化。
技术优化方案
Unsloth项目团队在后续更新中解决了这个问题。关键优化点包括:
-
损失计算标准化:移除了序列长度相关的权重因子,采用对所有token损失直接求和的方式,避免了序列长度带来的偏差。
-
RoPE内核改进:为了使序列打包技术能够正确工作,需要对RoPE(Rotary Position Embedding)内核进行修改,使其能够接受位置索引参数。
技术影响与意义
这项优化使得Unsloth项目能够:
- 更高效地利用计算资源,减少padding带来的浪费
- 保持模型训练过程的数学一致性
- 在不影响模型性能的前提下提高训练速度
对于使用类似Transformer架构的模型训练,这项技术优化具有重要的参考价值,特别是在处理变长序列数据时,能够显著提升训练效率。
总结
Unsloth项目通过改进序列打包技术和交叉熵损失计算方式,展示了深度学习训练优化的一个重要方向。这种技术改进不仅提高了计算效率,还保证了模型训练的数学严谨性,为相关领域的研究和实践提供了有价值的参考。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C077
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
462
3.44 K
Ascend Extension for PyTorch
Python
269
309
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
188
77
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
421
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692