Liger-Kernel项目中序列打包训练时的交叉熵损失问题分析
2025-06-10 04:53:50作者:庞眉杨Will
背景介绍
在大型语言模型训练过程中,序列打包(Packing)是一种常见的技术优化手段。Liger-Kernel项目作为LinkedIn开发的高性能深度学习内核库,近期新增了序列打包功能以加速训练过程。然而,这一优化技术在实际应用中可能会对模型训练的交叉熵损失计算产生潜在影响。
问题本质
序列打包技术将多个训练样本拼接成一个更长的序列,以提高计算效率。但这种处理方式会改变原始损失函数的计算逻辑:
- 传统处理方式:每个序列独立计算损失后取平均
- 打包处理方式:所有token的损失直接平均
这种差异会导致不同序列中的token在损失计算中获得不同的权重。例如,短序列中的token在打包后会获得比原始处理方式更小的权重,而长序列中的token权重变化则相反。
技术细节分析
在监督微调(SFT)场景下,问题会变得更加复杂。典型的对话数据通常包含用户提问(需掩码)和助手回答(需计算损失)两部分。打包处理后:
- 掩码token(pad/ignore tokens)可能被错误识别为序列边界
- 多轮对话场景下,连续的用户-助手交替会使序列边界判断更加困难
现有实现对比
通过分析主流框架实现发现:
- HuggingFace Transformers:其默认的交叉熵损失实现会通过reshape操作丢失序列长度信息
- LabelSmoother:虽然实现了自定义损失函数,但同样未考虑打包序列的特殊处理
解决方案探讨
针对这一问题,潜在的技术方案包括:
- 引入is_packed标志:在交叉熵内核中增加打包处理逻辑
- 边界识别优化:利用ignore_token_index识别有效序列边界
- 权重调整:根据原始序列长度重新调整损失权重
实施建议
建议采取分阶段实施方案:
- 第一阶段:实现单轮对话场景下的正确处理
- 第二阶段:扩展支持多轮对话等复杂场景
- 性能优化:确保新增功能不影响原有计算效率
总结
序列打包虽然能显著提升训练效率,但需要特别注意其对损失函数计算的影响。Liger-Kernel作为高性能计算内核,在处理这类优化技术时需要确保数学等价性,避免引入训练偏差。这一问题也反映了深度学习系统开发中性能优化与算法正确性之间需要平衡的典型挑战。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0126DuiLib_Ultimate
DuiLib_Ultimate是duilib库的增强拓展版,库修复了大量用户在开发使用中反馈的Bug,新增了更加贴近产品开发需求的功能,并持续维护更新。C++03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile03
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
271

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
910
542

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
341
1.21 K

openGauss kernel ~ openGauss is an open source relational database management system
C++
142
188

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
377
387

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
63
58

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.1 K
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
87
4