首页
/ Liger-Kernel项目中序列打包训练时的交叉熵损失问题分析

Liger-Kernel项目中序列打包训练时的交叉熵损失问题分析

2025-06-10 04:53:50作者:庞眉杨Will

背景介绍

在大型语言模型训练过程中,序列打包(Packing)是一种常见的技术优化手段。Liger-Kernel项目作为LinkedIn开发的高性能深度学习内核库,近期新增了序列打包功能以加速训练过程。然而,这一优化技术在实际应用中可能会对模型训练的交叉熵损失计算产生潜在影响。

问题本质

序列打包技术将多个训练样本拼接成一个更长的序列,以提高计算效率。但这种处理方式会改变原始损失函数的计算逻辑:

  1. 传统处理方式:每个序列独立计算损失后取平均
  2. 打包处理方式:所有token的损失直接平均

这种差异会导致不同序列中的token在损失计算中获得不同的权重。例如,短序列中的token在打包后会获得比原始处理方式更小的权重,而长序列中的token权重变化则相反。

技术细节分析

在监督微调(SFT)场景下,问题会变得更加复杂。典型的对话数据通常包含用户提问(需掩码)和助手回答(需计算损失)两部分。打包处理后:

  1. 掩码token(pad/ignore tokens)可能被错误识别为序列边界
  2. 多轮对话场景下,连续的用户-助手交替会使序列边界判断更加困难

现有实现对比

通过分析主流框架实现发现:

  1. HuggingFace Transformers:其默认的交叉熵损失实现会通过reshape操作丢失序列长度信息
  2. LabelSmoother:虽然实现了自定义损失函数,但同样未考虑打包序列的特殊处理

解决方案探讨

针对这一问题,潜在的技术方案包括:

  1. 引入is_packed标志:在交叉熵内核中增加打包处理逻辑
  2. 边界识别优化:利用ignore_token_index识别有效序列边界
  3. 权重调整:根据原始序列长度重新调整损失权重

实施建议

建议采取分阶段实施方案:

  1. 第一阶段:实现单轮对话场景下的正确处理
  2. 第二阶段:扩展支持多轮对话等复杂场景
  3. 性能优化:确保新增功能不影响原有计算效率

总结

序列打包虽然能显著提升训练效率,但需要特别注意其对损失函数计算的影响。Liger-Kernel作为高性能计算内核,在处理这类优化技术时需要确保数学等价性,避免引入训练偏差。这一问题也反映了深度学习系统开发中性能优化与算法正确性之间需要平衡的典型挑战。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
271
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
910
542
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
341
1.21 K
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
142
188
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
377
387
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
63
58
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.1 K
0
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
87
4