PyKAN训练过程中Loss突变为NaN的问题分析与解决方案
2025-05-14 01:13:16作者:昌雅子Ethen
在深度学习模型训练过程中,损失函数(Loss)突然变为NaN(Not a Number)是一个常见但棘手的问题。本文将以PyKAN项目为例,深入分析这一现象的原因,并提供有效的解决方案。
问题现象
在PyKAN模型的训练过程中,可以观察到以下典型现象:
- 训练初期Loss值正常下降,显示为科学计数法格式(如5.15e-01)
- 训练到中期(如第448次迭代)时,Loss突然变为NaN
- 随后所有相关指标(train loss、test loss、reg)都变为NaN
- 训练过程虽然继续,但模型已经无法学习
根本原因分析
导致Loss变为NaN的常见原因包括:
-
数值不稳定:在深度神经网络中,特别是使用某些激活函数时,数值可能变得过大或过小,导致浮点数溢出。
-
梯度爆炸:当梯度值变得极大时,参数更新会导致权重值超出浮点数表示范围。
-
正则化过强:过大的正则化系数(lamb)可能导致优化过程不稳定。
-
优化器选择不当:某些优化算法(如LBFGS)在某些情况下可能比Adam等优化器更容易出现数值不稳定问题。
解决方案
针对PyKAN项目中出现的这一问题,可以采取以下解决方案:
1. 调整正则化系数
降低正则化参数lamb的值,减轻正则化对模型训练的约束强度。正则化过强不仅可能导致Loss变为NaN,还可能导致模型欠拟合。
2. 更换优化器
将优化器从LBFGS改为Adam:
- LBFGS是二阶优化方法,虽然收敛速度快,但对学习率敏感且容易不稳定
- Adam优化器具有自适应学习率特性,通常更稳定,适合大多数深度学习任务
3. 梯度裁剪
实现梯度裁剪(Gradient Clipping)技术,限制梯度的大小,防止梯度爆炸导致的数值不稳定。
4. 学习率调整
适当降低学习率,虽然可能减慢收敛速度,但能提高训练稳定性。
5. 权重初始化检查
确保模型参数初始化合理,避免初始值过大或过小导致的数值问题。
预防措施
为了避免训练过程中出现NaN问题,可以采取以下预防措施:
- 在训练过程中添加数值检查,一旦检测到NaN立即停止训练并保存当前状态
- 实现训练过程的监控和日志记录,便于问题诊断
- 对输入数据进行标准化处理,确保数值范围合理
- 考虑使用更稳定的激活函数,如ReLU系列替代传统的sigmoid/tanh
总结
Loss突变为NaN是深度学习训练中的常见问题,通过合理调整正则化强度、选择合适的优化器、控制梯度范围等方法,可以有效解决这一问题。在PyKAN项目中,特别需要注意LBFGS优化器和正则化参数的设置。理解这些问题的根源并采取适当的预防措施,将大大提高模型训练的稳定性和成功率。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250