PyKAN训练过程中Loss突变为NaN的问题分析与解决方案
2025-05-14 18:23:25作者:昌雅子Ethen
在深度学习模型训练过程中,损失函数(Loss)突然变为NaN(Not a Number)是一个常见但棘手的问题。本文将以PyKAN项目为例,深入分析这一现象的原因,并提供有效的解决方案。
问题现象
在PyKAN模型的训练过程中,可以观察到以下典型现象:
- 训练初期Loss值正常下降,显示为科学计数法格式(如5.15e-01)
- 训练到中期(如第448次迭代)时,Loss突然变为NaN
- 随后所有相关指标(train loss、test loss、reg)都变为NaN
- 训练过程虽然继续,但模型已经无法学习
根本原因分析
导致Loss变为NaN的常见原因包括:
-
数值不稳定:在深度神经网络中,特别是使用某些激活函数时,数值可能变得过大或过小,导致浮点数溢出。
-
梯度爆炸:当梯度值变得极大时,参数更新会导致权重值超出浮点数表示范围。
-
正则化过强:过大的正则化系数(lamb)可能导致优化过程不稳定。
-
优化器选择不当:某些优化算法(如LBFGS)在某些情况下可能比Adam等优化器更容易出现数值不稳定问题。
解决方案
针对PyKAN项目中出现的这一问题,可以采取以下解决方案:
1. 调整正则化系数
降低正则化参数lamb的值,减轻正则化对模型训练的约束强度。正则化过强不仅可能导致Loss变为NaN,还可能导致模型欠拟合。
2. 更换优化器
将优化器从LBFGS改为Adam:
- LBFGS是二阶优化方法,虽然收敛速度快,但对学习率敏感且容易不稳定
- Adam优化器具有自适应学习率特性,通常更稳定,适合大多数深度学习任务
3. 梯度裁剪
实现梯度裁剪(Gradient Clipping)技术,限制梯度的大小,防止梯度爆炸导致的数值不稳定。
4. 学习率调整
适当降低学习率,虽然可能减慢收敛速度,但能提高训练稳定性。
5. 权重初始化检查
确保模型参数初始化合理,避免初始值过大或过小导致的数值问题。
预防措施
为了避免训练过程中出现NaN问题,可以采取以下预防措施:
- 在训练过程中添加数值检查,一旦检测到NaN立即停止训练并保存当前状态
- 实现训练过程的监控和日志记录,便于问题诊断
- 对输入数据进行标准化处理,确保数值范围合理
- 考虑使用更稳定的激活函数,如ReLU系列替代传统的sigmoid/tanh
总结
Loss突变为NaN是深度学习训练中的常见问题,通过合理调整正则化强度、选择合适的优化器、控制梯度范围等方法,可以有效解决这一问题。在PyKAN项目中,特别需要注意LBFGS优化器和正则化参数的设置。理解这些问题的根源并采取适当的预防措施,将大大提高模型训练的稳定性和成功率。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
677
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146