NeuralForecast中实现滚动窗口预测的技术方案
2025-06-24 18:07:22作者:卓炯娓
概述
在时间序列预测领域,NeuralForecast作为Nixtla推出的深度学习预测库,提供了强大的预测能力。本文将详细介绍如何在NeuralForecast中实现滚动窗口预测的技术方案,解决当测试集长度远大于模型设定的预测范围(h)时的预测挑战。
问题背景
在实际应用中,我们经常会遇到这样的情况:模型被训练为预测短期范围(如7天),但需要在更长的测试集(如30天)上进行预测。直接设置h=30会导致内存不足等问题,而传统的测试集分割方法又无法满足需求。
递归预测解决方案
NeuralForecast提供了递归预测的方法来实现滚动窗口预测。其核心思想是将模型的预测结果作为下一步预测的输入,逐步扩展预测范围。
实现步骤
-
确定预测参数:
- 定义完整预测范围(full_horizon)
- 计算需要进行的预测次数(n_predicts)
-
初始化数据:
- 使用训练数据作为初始输入
-
循环预测:
- 每次预测模型设定的h步
- 将预测结果追加到历史数据中
- 重复直到覆盖完整预测范围
代码实现
import math
import pandas as pd
# 设置预测参数
full_horizon = 200 # 完整预测范围
n_predicts = math.ceil(full_horizon / model.h) # 计算预测次数
# 初始化数据
combined_train = train.copy()
forecasts = []
# 递归预测循环
for _ in range(n_predicts):
# 进行单步预测
step_forecast = probabilistic_nhits.predict(df=combined_train, futr_df=test)
forecasts.append(step_forecast)
# 重命名预测列为目标变量名
step_forecast = step_forecast.rename(columns={your_model_name: 'y'})
# 将预测结果追加到历史数据中
combined_train = pd.concat([combined_train, step_forecast])
# 合并所有预测结果
final_forecast = pd.concat(forecasts)
多模型处理方案
当NeuralForecast对象包含多个模型时,需要分别处理每个模型:
- 遍历models属性获取单个模型
- 对每个模型单独执行递归预测
- 合并各模型的最终预测结果
实际应用建议
- 内存管理:对于高频数据(如15分钟间隔),注意控制每次预测的范围,避免内存溢出
- 误差累积:递归预测可能导致误差累积,建议定期用真实值重置预测序列
- 性能优化:可以考虑并行化处理多个模型的预测过程
总结
通过递归预测方法,NeuralForecast可以灵活地实现任意长度的滚动窗口预测,突破了模型原始h参数的限制。这种技术方案特别适合需要长期预测但受限于计算资源的应用场景,为时间序列预测提供了更大的灵活性。
登录后查看全文
热门项目推荐
相关项目推荐
暂无数据
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
349
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758