NeuralForecast中实现滚动窗口预测的技术方案
2025-06-24 18:01:37作者:卓炯娓
概述
在时间序列预测领域,NeuralForecast作为Nixtla推出的深度学习预测库,提供了强大的预测能力。本文将详细介绍如何在NeuralForecast中实现滚动窗口预测的技术方案,解决当测试集长度远大于模型设定的预测范围(h)时的预测挑战。
问题背景
在实际应用中,我们经常会遇到这样的情况:模型被训练为预测短期范围(如7天),但需要在更长的测试集(如30天)上进行预测。直接设置h=30会导致内存不足等问题,而传统的测试集分割方法又无法满足需求。
递归预测解决方案
NeuralForecast提供了递归预测的方法来实现滚动窗口预测。其核心思想是将模型的预测结果作为下一步预测的输入,逐步扩展预测范围。
实现步骤
-
确定预测参数:
- 定义完整预测范围(full_horizon)
- 计算需要进行的预测次数(n_predicts)
-
初始化数据:
- 使用训练数据作为初始输入
-
循环预测:
- 每次预测模型设定的h步
- 将预测结果追加到历史数据中
- 重复直到覆盖完整预测范围
代码实现
import math
import pandas as pd
# 设置预测参数
full_horizon = 200 # 完整预测范围
n_predicts = math.ceil(full_horizon / model.h) # 计算预测次数
# 初始化数据
combined_train = train.copy()
forecasts = []
# 递归预测循环
for _ in range(n_predicts):
# 进行单步预测
step_forecast = probabilistic_nhits.predict(df=combined_train, futr_df=test)
forecasts.append(step_forecast)
# 重命名预测列为目标变量名
step_forecast = step_forecast.rename(columns={your_model_name: 'y'})
# 将预测结果追加到历史数据中
combined_train = pd.concat([combined_train, step_forecast])
# 合并所有预测结果
final_forecast = pd.concat(forecasts)
多模型处理方案
当NeuralForecast对象包含多个模型时,需要分别处理每个模型:
- 遍历models属性获取单个模型
- 对每个模型单独执行递归预测
- 合并各模型的最终预测结果
实际应用建议
- 内存管理:对于高频数据(如15分钟间隔),注意控制每次预测的范围,避免内存溢出
- 误差累积:递归预测可能导致误差累积,建议定期用真实值重置预测序列
- 性能优化:可以考虑并行化处理多个模型的预测过程
总结
通过递归预测方法,NeuralForecast可以灵活地实现任意长度的滚动窗口预测,突破了模型原始h参数的限制。这种技术方案特别适合需要长期预测但受限于计算资源的应用场景,为时间序列预测提供了更大的灵活性。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
122
149
暂无简介
Dart
579
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
345
仓颉编程语言运行时与标准库。
Cangjie
130
358
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
184
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205