Attention-Learn-to-Route 项目使用教程
2024-09-17 03:27:40作者:虞亚竹Luna
1. 项目目录结构及介绍
attention-learn-to-route/
├── images/
├── nets/
├── pretrained/
├── problems/
├── utils/
├── .gitignore
├── LICENSE
├── README.md
├── environment.yml
├── eval.py
├── generate_data.py
├── options.py
├── plot_vrp.ipynb
├── reinforce_baselines.py
├── run.py
├── simple_tsp.ipynb
├── train.py
目录结构介绍
- images/: 存放项目相关的图片文件。
- nets/: 存放神经网络模型的定义文件。
- pretrained/: 存放预训练模型的权重文件。
- problems/: 存放不同路由问题的定义和实现文件。
- utils/: 存放项目中使用的工具函数和辅助类。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目说明文档。
- environment.yml: 项目依赖的环境配置文件。
- eval.py: 用于评估模型的脚本。
- generate_data.py: 用于生成训练数据的脚本。
- options.py: 项目配置选项的定义文件。
- plot_vrp.ipynb: 用于绘制车辆路径问题(VRP)结果的 Jupyter Notebook。
- reinforce_baselines.py: 强化学习基线的定义文件。
- run.py: 项目启动文件。
- simple_tsp.ipynb: 用于简单旅行商问题(TSP)的 Jupyter Notebook。
- train.py: 用于训练模型的脚本。
2. 项目启动文件介绍
run.py
run.py
是项目的启动文件,用于执行训练和评估任务。可以通过命令行参数配置不同的训练和评估选项。
主要功能
- 训练模型: 通过指定不同的参数(如问题类型、图的大小、基线方法等)来训练模型。
- 评估模型: 加载预训练模型并进行评估。
使用示例
python run.py --graph_size 20 --baseline rollout --run_name 'tsp20_rollout'
3. 项目的配置文件介绍
environment.yml
environment.yml
是项目的依赖环境配置文件,用于创建和管理项目的虚拟环境。
主要内容
- 依赖包: 列出了项目所需的所有 Python 包及其版本。
使用示例
conda env create -f environment.yml
options.py
options.py
文件定义了项目中的配置选项,包括训练参数、模型参数、数据生成参数等。
主要内容
- 训练参数: 如学习率、批量大小、训练轮数等。
- 模型参数: 如嵌入维度、注意力头数等。
- 数据生成参数: 如问题类型、图的大小、随机种子等。
使用示例
from options import get_options
opts = get_options()
print(opts.graph_size)
通过以上介绍,您可以更好地理解和使用 attention-learn-to-route
项目。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5