Wenet项目中FP16训练出现Loss为NaN问题的分析与解决
2025-06-13 11:52:09作者:柯茵沙
在语音识别领域的Wenet项目实践中,使用混合精度训练时可能会遇到一个典型问题:当训练迭代到一定步数(如1万步左右)后,损失函数(loss)开始频繁出现NaN(非数值)的情况。这种现象在使用DeepSpeed Stage2优化器和FP16(半精度浮点数)模式时尤为常见。
问题本质分析
FP16训练出现NaN的根本原因在于半精度浮点数的数值表示范围有限(约±65,504),当模型在训练过程中产生过大的梯度值时,很容易超出这个范围,导致数值溢出(overflow)。这种数值不稳定现象通常表现为:
- 训练初期可能正常,随着模型参数更新逐渐出现异常
- 损失函数突然变为NaN或无限大
- 模型性能急剧下降
解决方案
首选方案:使用BF16格式
对于支持BF16(Brain Floating Point)的硬件(如较新的NVIDIA GPU),BF16是更好的选择。BF16具有与FP32相同的指数位(8位),但尾数位较少(7位),这使得它能够:
- 保持与FP32相似的数值范围
- 减少内存占用
- 避免FP16常见的数值溢出问题
次优方案:FP32全精度训练
在不支持BF16的硬件上(如NVIDIA V100),可以采用的解决方案是:
- 全程使用FP32训练:虽然会牺牲一些训练速度和内存效率,但能保证数值稳定性
- 混合精度策略:先使用FP32训练模型至相对稳定状态,再切换到FP16进行微调
- 初期FP32阶段:帮助模型找到相对稳定的参数空间
- 后期FP16阶段:加速训练并减少内存占用
实践建议
- 梯度裁剪:即使使用FP32,适当设置梯度裁剪阈值(如1.0或5.0)有助于防止梯度爆炸
- 学习率调整:出现NaN时,尝试降低学习率或使用学习率warmup策略
- 损失监控:实现NaN检测机制,当检测到NaN时自动回滚到上一个有效检查点
- 混合精度配置:如果使用混合精度,确保正确设置了loss scaling参数
总结
在Wenet等语音识别模型的训练中,数值稳定性是成功训练的关键因素之一。根据硬件条件选择合适的浮点精度格式,配合适当的训练策略,可以有效解决FP16训练中出现的NaN问题,确保模型训练的稳定性和最终性能。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218