首页
/ Wenet项目中FP16训练出现Loss为NaN问题的分析与解决

Wenet项目中FP16训练出现Loss为NaN问题的分析与解决

2025-06-13 10:17:04作者:柯茵沙

在语音识别领域的Wenet项目实践中,使用混合精度训练时可能会遇到一个典型问题:当训练迭代到一定步数(如1万步左右)后,损失函数(loss)开始频繁出现NaN(非数值)的情况。这种现象在使用DeepSpeed Stage2优化器和FP16(半精度浮点数)模式时尤为常见。

问题本质分析

FP16训练出现NaN的根本原因在于半精度浮点数的数值表示范围有限(约±65,504),当模型在训练过程中产生过大的梯度值时,很容易超出这个范围,导致数值溢出(overflow)。这种数值不稳定现象通常表现为:

  1. 训练初期可能正常,随着模型参数更新逐渐出现异常
  2. 损失函数突然变为NaN或无限大
  3. 模型性能急剧下降

解决方案

首选方案:使用BF16格式

对于支持BF16(Brain Floating Point)的硬件(如较新的NVIDIA GPU),BF16是更好的选择。BF16具有与FP32相同的指数位(8位),但尾数位较少(7位),这使得它能够:

  • 保持与FP32相似的数值范围
  • 减少内存占用
  • 避免FP16常见的数值溢出问题

次优方案:FP32全精度训练

在不支持BF16的硬件上(如NVIDIA V100),可以采用的解决方案是:

  1. 全程使用FP32训练:虽然会牺牲一些训练速度和内存效率,但能保证数值稳定性
  2. 混合精度策略:先使用FP32训练模型至相对稳定状态,再切换到FP16进行微调
    • 初期FP32阶段:帮助模型找到相对稳定的参数空间
    • 后期FP16阶段:加速训练并减少内存占用

实践建议

  1. 梯度裁剪:即使使用FP32,适当设置梯度裁剪阈值(如1.0或5.0)有助于防止梯度爆炸
  2. 学习率调整:出现NaN时,尝试降低学习率或使用学习率warmup策略
  3. 损失监控:实现NaN检测机制,当检测到NaN时自动回滚到上一个有效检查点
  4. 混合精度配置:如果使用混合精度,确保正确设置了loss scaling参数

总结

在Wenet等语音识别模型的训练中,数值稳定性是成功训练的关键因素之一。根据硬件条件选择合适的浮点精度格式,配合适当的训练策略,可以有效解决FP16训练中出现的NaN问题,确保模型训练的稳定性和最终性能。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K
kernelkernel
deepin linux kernel
C
22
6
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
981
395
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
932
555
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
519
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0