LoRA-Scripts项目中训练时出现Loss为NaN问题的分析与解决
2025-06-08 12:54:41作者:温艾琴Wonderful
问题现象
在LoRA-Scripts项目进行模型训练时,用户报告了一个常见的技术问题:训练过程中损失值(Loss)持续显示为NaN(Not a Number)。具体表现为:
- 训练开始后,avr_loss值始终显示为nan
- 即使经过数小时训练,loss值仍未更新为有效数值
- 该问题在项目更新后突然出现,之前版本工作正常
技术背景
在深度学习训练过程中,loss值为NaN通常表明训练过程中出现了数值不稳定的情况。可能的原因包括:
- 学习率设置过高:过大的学习率可能导致参数更新幅度过大,使模型参数进入不稳定的数值区域
- 梯度爆炸:梯度值变得极大,导致参数更新后产生数值溢出
- 混合精度训练问题:使用fp16混合精度训练时,数值范围较小,容易出现下溢或上溢
- 优化器问题:某些优化器在特定条件下可能导致数值不稳定
问题诊断
根据用户反馈和讨论,可以得出以下关键信息:
- 问题在项目更新后出现,之前版本工作正常,表明可能是新引入的代码变更导致了问题
- 用户尝试了多种参数组合(包括不同的精度设置)均无法解决问题
- 其他用户也报告了类似现象,表明这可能是一个普遍性问题而非个别配置错误
解决方案
经过技术分析,针对此问题有以下几种可能的解决方案:
-
回退到稳定版本:使用git checkout命令回退到更新前的稳定版本
git checkout <之前的commit hash>
-
调整训练精度:尝试将fp16改为bf16格式,bf16具有更大的数值范围,可以减少数值不稳定的情况
-
检查优化器设置:新版可能引入了新的优化器(ScheduleFree等),尝试更换为传统的Adam等优化器
-
降低学习率:适当降低学习率,避免参数更新幅度过大
-
监控硬件使用情况:确认GPU是否正常工作,显存是否足够
预防措施
为避免类似问题,建议:
- 在重要训练任务前,先进行小规模测试运行
- 保持训练环境的稳定性,避免频繁更新关键组件
- 记录有效的训练配置参数,便于出现问题后快速恢复
- 定期检查训练日志,及时发现异常情况
总结
LoRA训练中出现loss为NaN的问题通常与数值稳定性有关,可能由多种因素导致。通过系统性地检查训练配置、优化器选择和数值精度设置,大多数情况下可以找到解决方案。对于稳定性要求高的生产环境,建议使用经过充分验证的稳定版本,并在更新前做好测试和备份。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
- DDeepSeek-V3.1-TerminusDeepSeek-V3.1-Terminus是V3的更新版,修复语言问题,并优化了代码与搜索智能体性能。Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0270get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java00- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
AudioFly
AudioFly是一款基于LDM架构的文本转音频生成模型。它能生成采样率为44.1 kHz的高保真音频,且与文本提示高度一致,适用于音效、音乐及多事件音频合成等任务。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K

deepin linux kernel
C
22
6

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
981
395

React Native鸿蒙化仓库
C++
192
274

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
932
555

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
519

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0