ViDeNN 深度盲目视频去噪教程
2024-09-28 14:06:16作者:何将鹤
ViDeNN 是一个深度学习项目,旨在实现无需事先了解噪声分布(即盲去噪)情况下的视频去噪。本教程将指导您如何理解和操作这个项目,包括其目录结构、启动文件和配置文件的基本介绍。
1. 目录结构及介绍
ViDeNN 的项目目录组织如下:
ViDeNN/
├── Spatial-CNN # 空间卷积神经网络模块
│ ├── ...
├── Temp3-CNN # 基于时间的3帧处理模块
│ ├── ...
├── ckpt_videnn # 预训练模型存放路径
├── ckpt_videnn-g # 另一种预训练模型,专门针对高斯噪声
├── data # 数据存放目录
├── img # 图像相关文件或示例
├── lowlight_dataset # 低光条件数据集
├── gitignore
├── LICENSE # 许可证文件
├── README.md # 项目说明文档
├── denoise.sh # 视频去噪脚本
├── main_ViDeNN.py # 主程序文件,用于执行视频去噪
├── model_ViDeNN.py # 模型定义文件
├── requirements.txt # Python依赖包列表
├── ... # 其他可能的支持文件或文档
- Spatial-CNN 和 Temp3-CNN 分别是空间和时间维度上的去噪模型组件。
- ckpt_videnn, ckpt_videnn-g 分别存储不同训练目标的预训练权重。
- data, img, lowlight_dataset 目录用于存放训练数据和示例图像。
- README.md 包含项目简介和使用指南。
- main_ViDeNN.py 是运行视频去噪的核心脚本。
- model_ViDeNN.py 定义了去噪模型的架构。
- requirements.txt 列出了项目所需的所有Python依赖。
2. 项目的启动文件介绍
- main_ViDeNN.py
这个Python脚本是实际执行视频去噪任务的主要入口点。它使用在
ckpt_videnn
或ckpt_videnn-g
中指定的预训练模型对视频进行去噪。通过命令行参数,您可以控制是否使用GPU加速(--use_gpu
), 指定模型的保存位置,以及输入测试目录和保存去噪后图片的目录等。
3. 项目的配置文件介绍
ViDeNN项目并未直接提供一个传统的配置文件,如.ini
或.yaml
。然而,它的配置主要通过命令行参数来设定。这些参数在运行main_ViDeNN.py
时传递,例如:
- 使用GPU或CPU: 通过
--use_gpu
标志设置。 - 模型路径: 通过
--checkpoint_dir
指定,可选ckpt_videnn
或ckpt_videnn-g
。 - 输入与输出目录: 使用
--test_dir
和--save_dir
来指定。
虽然这些不是以文件形式存在的静态配置,但它们构成了运行项目不可或缺的“配置”要素。对于复杂的调整或自定义配置需求,用户可能会直接修改main_ViDeNN.py
或相关模型定义文件内的默认参数。
为了开始使用ViDeNN,首先确保满足所有环境要求,并根据上述指引调用相应脚本或修改必要参数。这将使您能够有效地利用该框架进行视频去噪。
热门项目推荐
鸿蒙开发工具大赶集
本仓将收集和展示鸿蒙开发工具,欢迎大家踊跃投稿。通过pr附上您的工具介绍和使用指南,并加上工具对应的链接,通过的工具将会成功上架到我们社区。012hertz
Go 微服务 HTTP 框架,具有高易用性、高性能、高扩展性等特点。Go01每日精选项目
🔥🔥 每日精选已经升级为:【行业动态】,快去首页看看吧,后续都在【首页 - 行业动态】内更新,多条更新哦~🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~029kitex
Go 微服务 RPC 框架,具有高性能、强可扩展的特点。Go00Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie058毕方Talon工具
本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python040PDFMathTranslate
PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython06mybatis-plus
mybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区018- DDeepSeek-R1探索新一代推理模型,DeepSeek-R1系列以大规模强化学习为基础,实现自主推理,表现卓越,推理行为强大且独特。开源共享,助力研究社区深入探索LLM推理能力,推动行业发展。【此简介由AI生成】。Python00
热门内容推荐
最新内容推荐
项目优选
收起

Python - 100天从新手到大师
Python
611
115

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79

✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
112
25

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48

🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29

🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
58

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
383
36

🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44

这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0