在sentence-transformers中训练新增token的嵌入向量
2025-05-13 01:17:05作者:伍霜盼Ellen
背景介绍
在自然语言处理领域,预训练语言模型如BERT及其变体已经成为主流。sentence-transformers是基于这些模型构建的专门用于生成句子嵌入的框架。在实际应用中,我们经常需要扩展模型的词汇表,添加一些特殊token来表示特定概念或关系。
问题场景
假设我们使用BAAI/bge-base-en-v1.5这样的预训练模型,需要添加一些表示ConceptNet关系的特殊token,如<|AtLocation|>、<|IsA|>等。然后,我们希望只训练这些新增token的嵌入向量,而保持原始模型的其他参数不变。
技术实现方案
1. 扩展tokenizer
首先需要扩展原始模型的tokenizer,添加新的特殊token。这可以通过以下步骤实现:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-base-en-v1.5")
new_tokens = ["<|AtLocation|>", "<|IsA|>", "<|AntonymOf|>"]
tokenizer.add_tokens(new_tokens)
2. 调整模型嵌入层
添加新token后,需要调整模型的嵌入层以容纳这些新token:
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("BAAI/bge-base-en-v1.5")
model.resize_token_embeddings(len(tokenizer))
3. 冻结原始参数
为了确保只训练新增token的嵌入,需要冻结模型的其他参数:
for param in model.parameters():
param.requires_grad = False
# 仅解冻新增token对应的嵌入
embedding_layer = model._first_module().auto_model.get_input_embeddings()
embedding_layer.weight.requires_grad[-len(new_tokens):] = True
4. 设计训练目标
使用ConceptNet的三元组数据(head, relation, tail),可以设计如下训练目标:
def custom_loss(head_emb, relation_emb, tail_emb):
return torch.norm(head_emb + relation_emb - tail_emb, p=2)
训练策略
- 数据准备:从ConceptNet中提取大量(head, relation, tail)三元组
- 批量处理:将head和tail转换为句子嵌入,relation转换为特殊token嵌入
- 优化目标:最小化
norm(embed(head) + embed(relation_token) - embed(tail)) - 参数更新:仅更新新增token对应的嵌入向量
应用价值
这种方法可以:
- 保持预训练模型的核心能力不变
- 仅针对特定任务添加必要的知识表示
- 避免全模型微调带来的灾难性遗忘问题
- 实现更高效的知识注入
注意事项
- 新增token的数量不宜过多,以免影响模型性能
- 训练数据需要充分覆盖新增token的使用场景
- 学习率设置要适当,通常比全模型微调时更小
- 需要验证新增token的嵌入是否真正捕获了预期语义
通过这种针对性训练方法,我们可以有效地扩展预训练模型的能力,同时保持其原有优势。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869