LLM项目中的结构化输出与JSON Schema支持技术解析
2025-05-30 13:49:35作者:何将鹤
在自然语言处理领域,结构化输出正变得越来越重要。LLM项目近期实现了通过JSON Schema规范模型输出的功能,这为开发者提供了更精确控制模型响应格式的能力。
核心功能实现
该项目通过引入--schema参数,允许用户为支持该功能的模型指定JSON Schema格式的输出要求。目前已在多个主流模型上成功实现:
- OpenAI模型:通过工具调用机制实现结构化输出
- Anthropic Claude:利用工具定义和强制选择特定工具
- Google Gemini:通过响应模式和清理后的Schema配置实现
技术实现细节
对于Anthropic Claude模型,实现方式是通过工具定义:
kwargs["tools"] = [{
"name": "output_structured_data",
"input_schema": prompt.schema,
}]
kwargs["tool_choice"] = {"type": "tool", "name": "output_structured_data"}
而Google Gemini由于仅支持JSON Schema子集,需要额外的Schema清理步骤:
def cleanup_schema(schema):
"Gemini支持JSON Schema的子集"
keys_to_remove = ("$schema", "additionalProperties")
# 递归移除不支持的属性
if isinstance(schema, dict):
for key in keys_to_remove:
schema.pop(key, None)
for value in schema.values():
cleanup_schema(value)
elif isinstance(schema, list):
for value in schema:
cleanup_schema(value)
return schema
实际应用示例
开发者可以定义一个dog.schema.json文件:
{
"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"properties": {
"dogs": {
"type": "array",
"items": {
"type": "object",
"properties": {
"name": {"type": "string", "minLength": 1},
"bio": {"type": "string", "minLength": 1}
},
"required": ["name", "bio"],
"additionalProperties": false
}
}
},
"required": ["dogs"],
"additionalProperties": false
}
然后通过命令行获取结构化输出:
llm --schema "$(cat dogs.schema.json)" 'invent three dogs' -m gpt-4o-mini | jq
未来发展方向
- Schema管理:计划添加类似模板管理的Schema存储和引用功能
- 日志分析:增强日志功能以支持按Schema查询和分析历史响应
- 模板集成:允许模板预定义Schema,简化常用结构化提取场景
- 本地模型支持:扩展对本地模型的结构化输出支持
技术价值
这一功能的实现为以下场景提供了强大支持:
- 数据提取和转换
- API响应标准化
- 自动化数据处理流水线
- 结构化数据收集和分析
通过JSON Schema规范模型输出,开发者可以更可靠地将LLM集成到生产系统中,减少后处理工作,提高系统整体稳定性。这一技术方向代表了LLM应用从自由文本向结构化数据发展的重要趋势。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355