Giskard项目中如何将LLM模型和嵌入模型从OpenAI迁移至Azure OpenAI
2025-06-13 18:33:34作者:翟江哲Frasier
在构建基于大语言模型(LLM)的应用时,模型服务提供商的选择直接影响着系统的性能和成本。Giskard作为开源的AI质量保障工具,支持多种LLM服务提供商,包括OpenAI和Azure OpenAI。本文将详细介绍如何在Giskard项目中完成从OpenAI到Azure OpenAI的完整迁移。
模型迁移的核心挑战
在Giskard项目中,模型迁移涉及两个关键层面:
- 评估器模型:用于执行质量评估的LLM
- 被测模型:需要被评估的目标模型
许多开发者容易忽略的是,这两个层面都需要独立配置模型参数。这也是为什么仅设置环境变量有时无法完全解决问题。
配置Azure OpenAI评估器
对于Giskard的评估功能,正确的配置方式如下:
import os
import giskard
# 设置Azure OpenAI API参数
os.environ["AZURE_API_KEY"] = "您的API密钥"
os.environ["AZURE_API_BASE"] = "https://您的服务名称.openai.azure.com"
os.environ["AZURE_API_VERSION"] = "2024-05-01-preview"
# 配置Giskard使用的模型
giskard.llm.set_llm_model("azure/gpt-4o")
giskard.llm.set_embedding_model("azure/text-embedding-3-small")
这段代码确保了Giskard的质量评估功能会使用Azure OpenAI服务。
改造被测模型
以IPCC气候问答模型为例,改造要点包括:
- 替换OpenAI客户端为Azure OpenAI客户端
- 更新嵌入模型配置
from langchain_openai import AzureOpenAI, AzureOpenAIEmbeddings
# 创建Azure OpenAI LLM实例
llm = AzureOpenAI(
deployment_name="您的部署名称",
temperature=0
)
# 使用Azure OpenAI嵌入模型
db = FAISS.from_documents(
docs,
AzureOpenAIEmbeddings(model="text-embedding-3-large")
)
常见问题解决方案
- 嵌入模型加载失败:确保同时设置了环境变量和模型参数
- API密钥错误:检查Azure门户中的密钥和终结点配置
- 版本兼容性:确认API版本与Azure OpenAI服务支持的版本一致
最佳实践建议
- 为不同环境(开发、测试、生产)使用独立的Azure OpenAI资源
- 在代码中明确指定模型部署名称,而非通用模型名称
- 监控Azure OpenAI的使用配额和成本
- 考虑实现模型配置的集中管理,避免硬编码
通过以上步骤,开发者可以完整地将Giskard项目中的LLM相关功能从OpenAI迁移至Azure OpenAI,同时保持原有的质量评估能力。这种迁移不仅提供了更多的部署选项,还能更好地满足企业级的安全和合规要求。
记住,成功的迁移不仅仅是API端点的替换,更需要理解整个架构中模型使用的各个环节,确保每个组件都得到正确的配置。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193