Assembled-CNN 使用指南
项目介绍
Assembled-CNN 是一个基于 TensorFlow 的实现,来源于论文《Compounding the Performance Improvements of Assembled Techniques in a Convolutional Neural Network》。该项目展示了通过细心组合各种技术并将其应用于基础卷积神经网络(如 ResNet 和 MobileNet)时,能在保持吞吐量减少最小化的同时提升模型的准确性和鲁棒性。该研究通过在基本的ResNet-50上实验,证明了从76.3%到82.78%的顶点准确率提升,并在iFood Competition Fine-Grained Visual Recognition等竞赛中取得优异成绩。
项目快速启动
要快速开始使用 assembled-cnn
,首先确保你的环境已配置好 TensorFlow 1.14.0 或更高版本,CUDA 10.0 及 Python 3.6+。以下是评估预训练的 Assemble-ResNet50 模型的步骤:
pip install Pillow sklearn requests Wand tqdm
# 设置必要的目录路径
DATA_DIR=/path/to/imagenet2012/tfrecord
MODEL_DIR=/path/to/Assemble-ResNet50/checkpoint
# 确保设置正确的GPU设备
CUDA_VISIBLE_DEVICES=1
# 运行评估脚本
python main_classification.py \
--eval_only=True \
--dataset_name=imagenet \
--data_dir=$DATA_DIR \
--model_dir=$MODEL_DIR \
--preprocessing_type=imagenet_224_256 \
--resnet_version=2 \
--resnet_size=50 \
--use_sk_block=True \
--anti_alias_type=sconv \
--anti_alias_filter_size=3
请替换 /path/to/...
为实际数据和模型存放路径。
应用案例和最佳实践
知识蒸馏与迁移学习
对于知识蒸馏或迁移学习场景,你需要先将教师模型的logits加入到TFRecord中,并调整相应的脚本来适应这种训练模式。迁移学习可显著提升特定任务性能,例如在Fine-Grained分类任务中。
自定义训练与微调
为了从零开始训练 Assemble-ResNet50 或微调模型至其他数据集,参照项目中的脚本指导,比如 train_assemble_from_scratch.sh
用于训练全部组装的 ResNet50,而 finetuning_assemble_on_food101.sh
则用于在 Food101 数据集上的微调。
典型生态项目
Assembled-CNN 的成功部署不仅仅限于图像分类。社区成员已经探索了它在对象检测、图像检索等领域的潜在应用。尽管这个项目聚焦于提升基础CNN的表现,但其思想和技术栈可以启发更多领域内的创新,尤其是在那些同样依赖于深度学习模型准确度和效率的场景。
开发者们可以通过借鉴此项目的设计思路,将其技术特性如抗混淆改进、网络结构优化等融入到自己的项目中,以提升模型的整体表现。此外,由于它是基于TensorFlow的,因此也易于与其他TensorFlow生态中的工具和服务集成,如TensorBoard进行可视化监控,或者使用TF Serving进行模型部署等。
以上是关于Assembled-CNN的基本使用教程及概览。深入探索项目细节和实践,建议详细阅读项目文档和源码,以及参与社区讨论,以获得更深入的理解和应用技巧。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~055CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0380- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









