Assembled-CNN 使用指南
项目介绍
Assembled-CNN 是一个基于 TensorFlow 的实现,来源于论文《Compounding the Performance Improvements of Assembled Techniques in a Convolutional Neural Network》。该项目展示了通过细心组合各种技术并将其应用于基础卷积神经网络(如 ResNet 和 MobileNet)时,能在保持吞吐量减少最小化的同时提升模型的准确性和鲁棒性。该研究通过在基本的ResNet-50上实验,证明了从76.3%到82.78%的顶点准确率提升,并在iFood Competition Fine-Grained Visual Recognition等竞赛中取得优异成绩。
项目快速启动
要快速开始使用 assembled-cnn,首先确保你的环境已配置好 TensorFlow 1.14.0 或更高版本,CUDA 10.0 及 Python 3.6+。以下是评估预训练的 Assemble-ResNet50 模型的步骤:
pip install Pillow sklearn requests Wand tqdm
# 设置必要的目录路径
DATA_DIR=/path/to/imagenet2012/tfrecord
MODEL_DIR=/path/to/Assemble-ResNet50/checkpoint
# 确保设置正确的GPU设备
CUDA_VISIBLE_DEVICES=1
# 运行评估脚本
python main_classification.py \
--eval_only=True \
--dataset_name=imagenet \
--data_dir=$DATA_DIR \
--model_dir=$MODEL_DIR \
--preprocessing_type=imagenet_224_256 \
--resnet_version=2 \
--resnet_size=50 \
--use_sk_block=True \
--anti_alias_type=sconv \
--anti_alias_filter_size=3
请替换 /path/to/... 为实际数据和模型存放路径。
应用案例和最佳实践
知识蒸馏与迁移学习
对于知识蒸馏或迁移学习场景,你需要先将教师模型的logits加入到TFRecord中,并调整相应的脚本来适应这种训练模式。迁移学习可显著提升特定任务性能,例如在Fine-Grained分类任务中。
自定义训练与微调
为了从零开始训练 Assemble-ResNet50 或微调模型至其他数据集,参照项目中的脚本指导,比如 train_assemble_from_scratch.sh 用于训练全部组装的 ResNet50,而 finetuning_assemble_on_food101.sh 则用于在 Food101 数据集上的微调。
典型生态项目
Assembled-CNN 的成功部署不仅仅限于图像分类。社区成员已经探索了它在对象检测、图像检索等领域的潜在应用。尽管这个项目聚焦于提升基础CNN的表现,但其思想和技术栈可以启发更多领域内的创新,尤其是在那些同样依赖于深度学习模型准确度和效率的场景。
开发者们可以通过借鉴此项目的设计思路,将其技术特性如抗混淆改进、网络结构优化等融入到自己的项目中,以提升模型的整体表现。此外,由于它是基于TensorFlow的,因此也易于与其他TensorFlow生态中的工具和服务集成,如TensorBoard进行可视化监控,或者使用TF Serving进行模型部署等。
以上是关于Assembled-CNN的基本使用教程及概览。深入探索项目细节和实践,建议详细阅读项目文档和源码,以及参与社区讨论,以获得更深入的理解和应用技巧。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00