Assembled-CNN 使用指南
项目介绍
Assembled-CNN 是一个基于 TensorFlow 的实现,来源于论文《Compounding the Performance Improvements of Assembled Techniques in a Convolutional Neural Network》。该项目展示了通过细心组合各种技术并将其应用于基础卷积神经网络(如 ResNet 和 MobileNet)时,能在保持吞吐量减少最小化的同时提升模型的准确性和鲁棒性。该研究通过在基本的ResNet-50上实验,证明了从76.3%到82.78%的顶点准确率提升,并在iFood Competition Fine-Grained Visual Recognition等竞赛中取得优异成绩。
项目快速启动
要快速开始使用 assembled-cnn
,首先确保你的环境已配置好 TensorFlow 1.14.0 或更高版本,CUDA 10.0 及 Python 3.6+。以下是评估预训练的 Assemble-ResNet50 模型的步骤:
pip install Pillow sklearn requests Wand tqdm
# 设置必要的目录路径
DATA_DIR=/path/to/imagenet2012/tfrecord
MODEL_DIR=/path/to/Assemble-ResNet50/checkpoint
# 确保设置正确的GPU设备
CUDA_VISIBLE_DEVICES=1
# 运行评估脚本
python main_classification.py \
--eval_only=True \
--dataset_name=imagenet \
--data_dir=$DATA_DIR \
--model_dir=$MODEL_DIR \
--preprocessing_type=imagenet_224_256 \
--resnet_version=2 \
--resnet_size=50 \
--use_sk_block=True \
--anti_alias_type=sconv \
--anti_alias_filter_size=3
请替换 /path/to/...
为实际数据和模型存放路径。
应用案例和最佳实践
知识蒸馏与迁移学习
对于知识蒸馏或迁移学习场景,你需要先将教师模型的logits加入到TFRecord中,并调整相应的脚本来适应这种训练模式。迁移学习可显著提升特定任务性能,例如在Fine-Grained分类任务中。
自定义训练与微调
为了从零开始训练 Assemble-ResNet50 或微调模型至其他数据集,参照项目中的脚本指导,比如 train_assemble_from_scratch.sh
用于训练全部组装的 ResNet50,而 finetuning_assemble_on_food101.sh
则用于在 Food101 数据集上的微调。
典型生态项目
Assembled-CNN 的成功部署不仅仅限于图像分类。社区成员已经探索了它在对象检测、图像检索等领域的潜在应用。尽管这个项目聚焦于提升基础CNN的表现,但其思想和技术栈可以启发更多领域内的创新,尤其是在那些同样依赖于深度学习模型准确度和效率的场景。
开发者们可以通过借鉴此项目的设计思路,将其技术特性如抗混淆改进、网络结构优化等融入到自己的项目中,以提升模型的整体表现。此外,由于它是基于TensorFlow的,因此也易于与其他TensorFlow生态中的工具和服务集成,如TensorBoard进行可视化监控,或者使用TF Serving进行模型部署等。
以上是关于Assembled-CNN的基本使用教程及概览。深入探索项目细节和实践,建议详细阅读项目文档和源码,以及参与社区讨论,以获得更深入的理解和应用技巧。
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04