**Assembled-CNN 使用指南**
2024-09-27 15:28:56作者:贡沫苏Truman
本指南旨在帮助您快速理解并应用 Assembled-CNN,这是一个基于TensorFlow实现的项目,其目标在于通过组合多种技术来提升卷积神经网络(CNN)的性能。以下内容包括项目的核心组成部分、启动流程以及配置说明。
1. 目录结构及介绍
Assembled-CNN 的项目结构设计清晰,便于开发者理解和扩展。以下是主要的目录和文件说明:
/datasets: 包含数据集相关的预处理脚本和配置。/figures: 存储实验结果或模型架构图等图像资料。/functions,/kd,/losses,/mcemce,/metric,/nets,/official,/preprocessing,/scripts,/utils: 分别包含了函数库、知识蒸馏相关、损失函数、多类别均衡评价指标、评估指标、网络定义、官方实现参考、数据预处理脚本、运行脚本以及实用工具。.gitignore,LICENSE,NOTICE,README.md: 标准Git忽略文件、许可证信息、注意事项和项目读我文件。main_classification.py: 主要的训练与评估脚本。scripts: 含有各种训练、微调和评估的脚本示例。
2. 项目的启动文件介绍
主要的启动文件是 main_classification.py。该文件负责模型的训练、评估或者仅进行预测。您可以通过命令行参数配置不同的操作模式、数据路径、模型保存路径等关键设置。例如,进行模型评估的命令示例如下:
CUDA_VISIBLE_DEVICES=1 python main_classification.py \
--eval_only=True \
--dataset_name=imagenet \
--data_dir=/path/to/imagenet2012/tfrecord \
--model_dir=/path/Assemble-ResNet50/checkpoint \
--preprocessing_type=imagenet_224_256 \
--resnet_version=2 \
--resnet_size=50 \
--use_sk_block=True \
--use_resnet_d=False \
--anti_alias_type=sconv \
--anti_alias_filter_size=3
这里展示了如何指定GPU设备、评估模式、数据集位置、模型存储路径以及具体的模型配置。
3. 项目的配置文件介绍
Assembled-CNN并没有直接提供一个单独的配置文件如.json或.yaml,而是将配置选项集成在了脚本中并通过命令行参数传入。这意味着用户需要通过修改 main_classification.py 文件内的默认值或直接在运行脚本时使用命令行参数来调整配置。
例如,如果您想要改变模型的版本、是否启用特定的功能(如use_sk_block)或是调整数据预处理方式,这些都可以通过上述提到的命令行参数实现。这种配置方式要求用户更加熟悉每个参数的意义及其对模型的影响,增加了灵活性但同时也提高了上手难度。
为了更系统地管理配置,建议遵循一些最佳实践,比如可以考虑将常用配置项抽象出来,形成环境变量或专门的配置管理部分,以提高可维护性和复用性。
此指南为简化版,具体实现细节和更多高级功能请参考项目的 README.md 文件和脚本内的注释,确保在实际操作前仔细阅读项目文档。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.83 K
React Native鸿蒙化仓库
JavaScript
259
322