MLRun v1.10.0-rc10版本发布:工作流重试与模型服务优化
MLRun作为一个开源的机器学习运维平台,致力于简化机器学习工作流程的构建、部署和管理。本次发布的v1.10.0-rc10版本带来了多项功能增强和问题修复,特别是在工作流重试机制和模型服务方面的改进尤为突出。
核心功能增强
工作流重试机制
新版本引入了RerunRunner组件和基础的rerun_workflow处理程序,为MLRun的工作流提供了更强大的容错能力。这一改进使得当工作流中的某个步骤失败时,系统能够自动或手动触发重试机制,而无需从头开始执行整个工作流。这对于处理长时间运行的机器学习流水线特别有价值,可以显著节省计算资源和时间成本。
模型服务优化
在模型服务方面,本次更新改进了后台任务状态的获取机制。现在用户可以更准确地监控和管理模型服务的部署、更新等后台操作的状态。同时修复了模型端点UID从数据库解析的问题,确保了模型服务标识符的正确处理,这对于生产环境中的模型服务管理至关重要。
系统稳定性提升
数据库迁移改进
针对数据库迁移过程中的事务处理进行了优化,现在系统会在Alembic迁移完成后自动提交事务,避免了可能的数据库状态不一致问题。这一改进提升了系统升级和数据迁移的可靠性。
框架问题修复
解决了多个框架层面的问题,包括ML-10270和ML-10333等已知问题,增强了系统的整体稳定性。这些修复涉及到底层框架的核心功能,确保了MLRun在各种使用场景下的可靠表现。
构建与部署优化
构建流程改进
对项目的构建系统进行了优化,提高了构建效率和可靠性。同时修复了patch_remote脚本在没有构建环境时的处理逻辑,使得远程部署更加灵活和健壮。
依赖管理
更新了astral-sh/setup-uv依赖项的版本,从6.3.0升级到6.3.1,确保了构建环境的稳定性和安全性。
文档与许可更新
完善了Kubeflow Pipelines(KFP)相关的文档描述,修正了变更日志中的相关信息。同时更新了项目的许可信息,确保符合最新的法律要求。
总结
MLRun v1.10.0-rc10版本在功能增强和系统稳定性方面都有显著提升,特别是工作流重试机制的引入和模型服务的优化,为机器学习工程团队提供了更强大的工具集。这些改进使得MLRun在复杂机器学习工作流管理和生产部署方面更加成熟可靠。
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息09GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0274get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java01Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









