MLRun v1.10.0-rc10版本发布:工作流重试与模型服务优化
MLRun作为一个开源的机器学习运维平台,致力于简化机器学习工作流程的构建、部署和管理。本次发布的v1.10.0-rc10版本带来了多项功能增强和问题修复,特别是在工作流重试机制和模型服务方面的改进尤为突出。
核心功能增强
工作流重试机制
新版本引入了RerunRunner组件和基础的rerun_workflow处理程序,为MLRun的工作流提供了更强大的容错能力。这一改进使得当工作流中的某个步骤失败时,系统能够自动或手动触发重试机制,而无需从头开始执行整个工作流。这对于处理长时间运行的机器学习流水线特别有价值,可以显著节省计算资源和时间成本。
模型服务优化
在模型服务方面,本次更新改进了后台任务状态的获取机制。现在用户可以更准确地监控和管理模型服务的部署、更新等后台操作的状态。同时修复了模型端点UID从数据库解析的问题,确保了模型服务标识符的正确处理,这对于生产环境中的模型服务管理至关重要。
系统稳定性提升
数据库迁移改进
针对数据库迁移过程中的事务处理进行了优化,现在系统会在Alembic迁移完成后自动提交事务,避免了可能的数据库状态不一致问题。这一改进提升了系统升级和数据迁移的可靠性。
框架问题修复
解决了多个框架层面的问题,包括ML-10270和ML-10333等已知问题,增强了系统的整体稳定性。这些修复涉及到底层框架的核心功能,确保了MLRun在各种使用场景下的可靠表现。
构建与部署优化
构建流程改进
对项目的构建系统进行了优化,提高了构建效率和可靠性。同时修复了patch_remote脚本在没有构建环境时的处理逻辑,使得远程部署更加灵活和健壮。
依赖管理
更新了astral-sh/setup-uv依赖项的版本,从6.3.0升级到6.3.1,确保了构建环境的稳定性和安全性。
文档与许可更新
完善了Kubeflow Pipelines(KFP)相关的文档描述,修正了变更日志中的相关信息。同时更新了项目的许可信息,确保符合最新的法律要求。
总结
MLRun v1.10.0-rc10版本在功能增强和系统稳定性方面都有显著提升,特别是工作流重试机制的引入和模型服务的优化,为机器学习工程团队提供了更强大的工具集。这些改进使得MLRun在复杂机器学习工作流管理和生产部署方面更加成熟可靠。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00