探索未来检索:RetroMAE——预训练的检索导向语言模型新范式
2024-05-30 13:53:13作者:郁楠烈Hubert
项目简介
RetroMAE,全称为“RetroMAE: 预训练检索导向语言模型通过Masked Auto-Encoder”,是一个由Shitao Xiao等人开发的创新性开源项目,其最新成果已被收录于2022年的EMNLP会议。这个项目引入了一种全新的预训练方法,以强化密集检索器的能力,尤其是在MS MARCO和BEIR基准测试上的表现。
项目技术分析
RetroMAE的核心是利用Masked Auto-Encoder(MAE)技术对预训练模型进行优化。不同于传统的自编码器,RetroMAE采用了一个检索导向的方法,即在部分信息被遮掩的情况下,模型需要预测出原始文本的内容。这一过程提升了模型对语料库的理解和检索能力。
项目提供了包括RetroMAE基础模型在内的多个预训练模型,这些模型可以轻松地通过Huggingface Hub加载和使用。此外,它还支持两种预训练方法:RetroMAE和Duplex Masked Auto-Encoder(RetroMAE v2),后者在性能上有了显著提升。
应用场景与技术价值
RetroMAE的主要应用场景在于自然语言处理中的信息检索和问答系统。通过预训练,模型能够从大规模的无标签数据中学习到强大的表示能力,这使得它在下游任务如MS MARCO的精确匹配和BEIR的跨领域评估中表现出色。它不仅提高了监督学习的检索性能,还增强了模型的零样本迁移能力,能够在未见过的数据集上实现优秀的效果。
项目特点
- 创新的预训练策略:RetroMAE提出了检索导向的Masked Auto-Encoder方法,提高了模型的检索和理解能力。
- 出色的性能:在MS MARCO和BEIR基准测试中,RetroMAE模型的性能超越了现有的基线,展示了强大的检索和泛化能力。
- 易于使用:项目提供清晰的代码结构和使用示例,使得研究人员和开发者能快速地预训练和微调模型。
- 持续更新:随着RetroMAE v2的发布,项目团队仍在不断地进行优化和改进,以保持技术的前沿性。
如果你对构建高性能的信息检索系统感兴趣,或者想要探索更高效的预训练模型,RetroMAE无疑是你不可错过的开源宝藏。现在就加入社区,体验这一创新技术带来的力量吧!
引用:
@inproceedings{RetroMAE,
title={RetroMAE: Pre-Training Retrieval-oriented Language Models Via Masked Auto-Encoder},
author={Shitao Xiao, Zheng Liu, Yingxia Shao, Zhao Cao},
url={https://arxiv.org/abs/2205.12035},
booktitle ={EMNLP},
year={2022},
}
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
863
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K