探索未来检索:RetroMAE——预训练的检索导向语言模型新范式
2024-05-30 13:53:13作者:郁楠烈Hubert
项目简介
RetroMAE,全称为“RetroMAE: 预训练检索导向语言模型通过Masked Auto-Encoder”,是一个由Shitao Xiao等人开发的创新性开源项目,其最新成果已被收录于2022年的EMNLP会议。这个项目引入了一种全新的预训练方法,以强化密集检索器的能力,尤其是在MS MARCO和BEIR基准测试上的表现。
项目技术分析
RetroMAE的核心是利用Masked Auto-Encoder(MAE)技术对预训练模型进行优化。不同于传统的自编码器,RetroMAE采用了一个检索导向的方法,即在部分信息被遮掩的情况下,模型需要预测出原始文本的内容。这一过程提升了模型对语料库的理解和检索能力。
项目提供了包括RetroMAE基础模型在内的多个预训练模型,这些模型可以轻松地通过Huggingface Hub加载和使用。此外,它还支持两种预训练方法:RetroMAE和Duplex Masked Auto-Encoder(RetroMAE v2),后者在性能上有了显著提升。
应用场景与技术价值
RetroMAE的主要应用场景在于自然语言处理中的信息检索和问答系统。通过预训练,模型能够从大规模的无标签数据中学习到强大的表示能力,这使得它在下游任务如MS MARCO的精确匹配和BEIR的跨领域评估中表现出色。它不仅提高了监督学习的检索性能,还增强了模型的零样本迁移能力,能够在未见过的数据集上实现优秀的效果。
项目特点
- 创新的预训练策略:RetroMAE提出了检索导向的Masked Auto-Encoder方法,提高了模型的检索和理解能力。
- 出色的性能:在MS MARCO和BEIR基准测试中,RetroMAE模型的性能超越了现有的基线,展示了强大的检索和泛化能力。
- 易于使用:项目提供清晰的代码结构和使用示例,使得研究人员和开发者能快速地预训练和微调模型。
- 持续更新:随着RetroMAE v2的发布,项目团队仍在不断地进行优化和改进,以保持技术的前沿性。
如果你对构建高性能的信息检索系统感兴趣,或者想要探索更高效的预训练模型,RetroMAE无疑是你不可错过的开源宝藏。现在就加入社区,体验这一创新技术带来的力量吧!
引用:
@inproceedings{RetroMAE,
title={RetroMAE: Pre-Training Retrieval-oriented Language Models Via Masked Auto-Encoder},
author={Shitao Xiao, Zheng Liu, Yingxia Shao, Zhao Cao},
url={https://arxiv.org/abs/2205.12035},
booktitle ={EMNLP},
year={2022},
}
热门项目推荐
相关项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
263
54
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
open-eBackup
open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
85
63
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
xxl-job
XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
Java
9
0
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
171
41
RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
38
24
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
332
27