首页
/ Liger-Kernel项目中的交叉熵损失函数收敛测试问题分析

Liger-Kernel项目中的交叉熵损失函数收敛测试问题分析

2025-06-10 17:47:06作者:余洋婵Anita

问题背景

在Liger-Kernel项目中,开发团队设计了一个名为test_mini_models_with_logits的收敛性测试,用于验证经过monkey patch修改后的模型与原始模型在行为和输出上的一致性。这个测试主要比较两种模型(使用和不使用Liger补丁)的损失值和最后一步的logits输出。

问题现象

在最新版本的transformers库中,这个收敛测试开始失败。具体表现为测试比较的两个张量差异显著——实际上比较的是原始模型的logits和补丁模型的logits梯度,而非预期的两个logits张量。

技术原理

问题的根源在于LigerCrossEntropy的内存优化设计:

  1. 内存优化机制:LigerCrossEntropy为了节省内存,直接在logits张量上执行原地操作(in-place operation),将logits梯度存储在logits张量自身中。

  2. 原始测试设计:在CausalLMLoss上下文中,测试通过创建shift_logitsshift_labels临时张量来保存移位后的数据,然后将这些临时张量传递给LigerCrossEntropy。这样,原地操作只会影响临时张量,原始logits仍可被测试捕获。

  3. transformers优化:transformers的最新优化(PR #35646)移除了额外的内存分配,但带来了副作用——不再分配新张量来跟踪原始logits,导致测试实际上比较的是logits和其梯度。

解决方案

开发团队提出了几种解决方案思路:

  1. 比较logits梯度:既然无法直接获取logits,可以计算原始CrossEntropy的logits梯度,然后与LigerCrossEntropy的logits梯度进行比较。

  2. 优化BF16场景:发现BF16场景下由于logits.float()调用,LigerCrossEntropy将梯度保存在FP32张量而非原始BF16张量中,这意味着可以进一步减少内存分配。

  3. 封装ForCausalLMLoss:建议编写一个包装函数来修补整个ForCausalLMLoss,而不仅仅是nn.functional.CrossEntropy,这样可以更全面地优化内存使用。

技术影响

这一问题的解决过程揭示了几个重要技术点:

  1. 内存优化与测试的平衡:性能优化可能会影响测试的可观测性,需要在两者之间找到平衡。

  2. 原地操作的风险:使用原地操作虽然节省内存,但会破坏原始数据,可能影响调试和验证。

  3. 类型转换的影响:BF16与FP32之间的转换不仅影响计算精度,还会影响内存分配策略。

最终方案

项目团队最终决定:

  1. 修改收敛测试,改为比较logits梯度而非logits本身
  2. 优化LigerForCausalLMLoss实现,减少内存分配
  3. 保持测试的严格性,通过比较梯度、损失和所有模型参数来确保补丁的正确性

这一解决方案既保持了LigerCrossEntropy原始设计理念,又确保了测试的有效性,同时进一步优化了内存使用效率。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133