Liger-Kernel项目中的交叉熵损失函数收敛测试问题分析
问题背景
在Liger-Kernel项目中,开发团队设计了一个名为test_mini_models_with_logits的收敛性测试,用于验证经过monkey patch修改后的模型与原始模型在行为和输出上的一致性。这个测试主要比较两种模型(使用和不使用Liger补丁)的损失值和最后一步的logits输出。
问题现象
在最新版本的transformers库中,这个收敛测试开始失败。具体表现为测试比较的两个张量差异显著——实际上比较的是原始模型的logits和补丁模型的logits梯度,而非预期的两个logits张量。
技术原理
问题的根源在于LigerCrossEntropy的内存优化设计:
-
内存优化机制:LigerCrossEntropy为了节省内存,直接在logits张量上执行原地操作(in-place operation),将logits梯度存储在logits张量自身中。
-
原始测试设计:在CausalLMLoss上下文中,测试通过创建
shift_logits和shift_labels临时张量来保存移位后的数据,然后将这些临时张量传递给LigerCrossEntropy。这样,原地操作只会影响临时张量,原始logits仍可被测试捕获。 -
transformers优化:transformers的最新优化(PR #35646)移除了额外的内存分配,但带来了副作用——不再分配新张量来跟踪原始logits,导致测试实际上比较的是logits和其梯度。
解决方案
开发团队提出了几种解决方案思路:
-
比较logits梯度:既然无法直接获取logits,可以计算原始CrossEntropy的logits梯度,然后与LigerCrossEntropy的logits梯度进行比较。
-
优化BF16场景:发现BF16场景下由于logits.float()调用,LigerCrossEntropy将梯度保存在FP32张量而非原始BF16张量中,这意味着可以进一步减少内存分配。
-
封装ForCausalLMLoss:建议编写一个包装函数来修补整个ForCausalLMLoss,而不仅仅是nn.functional.CrossEntropy,这样可以更全面地优化内存使用。
技术影响
这一问题的解决过程揭示了几个重要技术点:
-
内存优化与测试的平衡:性能优化可能会影响测试的可观测性,需要在两者之间找到平衡。
-
原地操作的风险:使用原地操作虽然节省内存,但会破坏原始数据,可能影响调试和验证。
-
类型转换的影响:BF16与FP32之间的转换不仅影响计算精度,还会影响内存分配策略。
最终方案
项目团队最终决定:
- 修改收敛测试,改为比较logits梯度而非logits本身
- 优化LigerForCausalLMLoss实现,减少内存分配
- 保持测试的严格性,通过比较梯度、损失和所有模型参数来确保补丁的正确性
这一解决方案既保持了LigerCrossEntropy原始设计理念,又确保了测试的有效性,同时进一步优化了内存使用效率。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00