Liger-Kernel项目中交叉熵损失函数的Z损失支持优化
2025-06-10 09:39:21作者:姚月梅Lane
在深度学习模型训练过程中,交叉熵损失函数是最常用的损失函数之一。Liger-Kernel项目作为一个高性能深度学习框架,提供了名为LigerFusedLinearCrossEntropyFunction的融合操作来优化交叉熵损失的计算性能。
背景与问题分析
在模型训练优化过程中,除了常规的交叉熵损失外,Z损失(z loss)是一种常用的辅助损失项。Z损失主要用于稳定训练过程,特别是在使用混合精度训练时,它通过惩罚logits的平方和来防止数值不稳定问题。
Liger-Kernel项目中的LigerFusedLinearCrossEntropyFunction虽然已经支持了lse_square_scale参数(用于控制Z损失的缩放因子),但当前实现无法返回Z损失值。这使得开发者无法监控Z损失的具体数值,也无法将其纳入总损失计算中。
技术实现细节
从代码层面看,这个问题源于函数实现中缺少了对Z损失返回值的处理。具体来说,在计算过程中已经计算了Z损失,但没有将其作为输出返回。这属于一个接口设计上的小缺陷,只需要将计算结果通过适当的方式返回即可。
解决方案
正确的实现应该遵循项目测试文件中定义的API规范。这意味着:
- 函数接口需要扩展以支持Z损失的返回值
- 内部计算流程保持不变,因为Z损失已经计算完成
- 只需要将计算结果通过返回值暴露给调用者
这种修改属于非破坏性变更,不会影响现有代码的功能,只是增加了返回信息的完整性。
对开发者的影响
这一改进将使得开发者能够:
- 更全面地监控训练过程中的损失组成
- 更灵活地调整Z损失的权重
- 实现更精细的训练过程控制
对于使用Liger-Kernel进行模型训练的开发者来说,这一改进将提升训练过程的可观察性和可控性,特别是在处理数值稳定性要求较高的模型时。
总结
Liger-Kernel项目通过不断优化其核心操作,为深度学习模型训练提供了高性能的基础设施。这次对交叉熵损失函数Z损失支持的改进,体现了项目对开发者实际需求的响应能力。这类看似小的改进往往能在实际训练过程中带来显著的便利性和稳定性提升。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19