SMPLify-X项目中NaN损失值问题的分析与解决
2025-07-06 19:15:55作者:姚月梅Lane
问题现象
在使用SMPLify-X项目进行人体姿态估计时,部分用户遇到了两个关键问题:一是优化过程中出现NaN损失值,导致程序停止;二是在输出最终损失值时出现"unsupported format string passed to NoneType.format"的错误提示。
问题分析
NaN损失值问题
NaN(Not a Number)损失值通常出现在深度学习模型的训练或优化过程中,可能由以下几个原因导致:
- 数值不稳定:在反向传播过程中,梯度可能变得过大或过小,导致数值计算不稳定
- 学习率设置不当:过大的学习率可能导致参数更新幅度过大
- 损失函数设计问题:某些情况下损失函数的计算可能产生非法值
- 输入数据异常:包含异常值或格式不正确的输入数据
在SMPLify-X项目中,这个问题主要出现在姿态优化阶段,特别是在使用L-BFGS优化器时。从日志中可以看到,程序在多个优化阶段都遇到了NaN损失值,导致优化提前终止。
NoneType格式化错误
这个错误发生在尝试格式化输出最终损失值时,表明final_loss_val变量为None。这通常是因为前面的优化过程因NaN问题而失败,没有正确计算出最终的损失值。
解决方案
环境配置检查
根据用户反馈,重新配置环境后问题得到解决。这表明问题可能与以下环境因素有关:
- PyTorch版本:日志中显示使用了过载的add_方法,建议使用推荐的签名格式
- 依赖库版本冲突:某些科学计算库的版本不兼容可能导致数值计算问题
- CUDA/cuDNN版本:GPU计算相关组件的版本不匹配可能引发数值不稳定
具体解决步骤
- 创建干净的Python环境:使用conda或virtualenv创建新的虚拟环境
- 安装指定版本的PyTorch:根据项目要求安装兼容的PyTorch版本
- 检查CUDA兼容性:确保PyTorch版本与CUDA驱动版本匹配
- 验证基础数值计算:测试基本的矩阵运算是否正常
代码层面的调整
如果环境配置后问题仍然存在,可以考虑以下代码修改:
- 添加数值检查:在关键计算步骤后添加数值有效性检查
- 调整优化参数:减小学习率或改变优化器设置
- 添加异常处理:捕获NaN情况并进行适当处理
预防措施
- 定期更新环境:保持关键库的最新稳定版本
- 实现数值检查:在关键计算步骤添加assert语句
- 使用日志记录:详细记录优化过程中的中间值
- 梯度裁剪:在优化过程中实施梯度裁剪防止数值爆炸
总结
SMPLify-X项目中的NaN损失值问题通常与环境配置相关,特别是PyTorch及其依赖库的版本兼容性。通过创建干净的Python环境并安装兼容版本的依赖库,大多数情况下可以解决此类问题。对于更复杂的情况,可能需要在代码层面添加额外的数值稳定性检查和异常处理机制。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
408
3.15 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
674
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
321
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
263
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868