Optax项目中softmax交叉熵损失函数对负无穷大logits的处理问题分析
2025-07-07 10:22:20作者:沈韬淼Beryl
问题背景
在深度学习框架Optax中,softmax交叉熵损失函数在处理包含负无穷大(-inf)的logits时存在一个数值稳定性问题。当某个logit为负无穷大且对应的标签为0时,当前实现会错误地返回NaN,而理论上这种情况下应该返回0。
问题重现
考虑以下简单示例:
logits = jnp.array([-jnp.inf, 0])
labels = jnp.array([0, 1])
当前Optax实现会返回NaN,而理论上应该返回0,因为:
- 第一个logit为负无穷大,但对应标签为0,根据交叉熵定义,0*log(0)应该被视为0
- 第二个logit为0,对应标签为1,这部分计算正常
技术分析
数学原理
交叉熵损失的数学表达式为:
H(p,q) = -Σ p_i * log(q_i)
其中p是真实分布(标签),q是预测分布(softmax输出)。当p_i=0时,无论q_i为何值(包括0),按照数学约定,该项应为0。
当前实现问题
Optax当前实现直接使用log_softmax后与标签相乘,当logits包含负无穷大时:
- 计算log_softmax会在对应位置得到负无穷大
- 与0标签相乘时,0*(-inf)会产生NaN,而不是预期的0
解决方案探讨
经过讨论,提出了几种可能的解决方案:
-
使用xlogy函数: 直接利用JAX提供的xlogy函数,它专门处理x*log(y)在x=0时的特殊情况
-
条件判断法: 在计算时显式检查标签是否为0,如果是则强制结果为0
-
数学等价变换: 将交叉熵表示为logsumexp减去加权logits和,并处理标签为0的情况
实现挑战
在尝试修复此问题时,遇到了以下技术挑战:
-
梯度计算问题: 简单的条件判断会破坏梯度传播,特别是对标签的梯度计算
-
数值稳定性: 修改后的实现在某些边缘情况下可能导致数值不稳定
-
向后兼容性: 改变广泛使用的基础损失函数可能影响现有模型的训练行为
最佳实践建议
对于需要在logits中使用负无穷大进行掩码的场景(如RL中的动作屏蔽),建议:
- 使用clip函数限制logits范围,避免出现极端值
- 如果必须使用负无穷大,考虑自定义损失函数处理特殊情况
- 在模型训练过程中监控损失值的变化,特别是出现NaN时
总结
数值稳定性是深度学习实现中的重要考虑因素。Optax中的softmax交叉熵函数在处理极端值时需要特别注意,特别是在标签为0的情况下。虽然理论上存在完美的数学解决方案,但在实际实现中需要平衡数学正确性、数值稳定性和计算效率。这个问题也提醒我们,在使用深度学习框架时,对于边缘情况的处理需要特别关注。
登录后查看全文
热门项目推荐
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0269get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java00AudioFly
AudioFly是一款基于LDM架构的文本转音频生成模型。它能生成采样率为44.1 kHz的高保真音频,且与文本提示高度一致,适用于音效、音乐及多事件音频合成等任务。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile08
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程视频测验中的Tab键导航问题解析2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp论坛排行榜项目中的错误日志规范要求4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析6 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析7 freeCodeCamp课程页面空白问题的技术分析与解决方案8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K

deepin linux kernel
C
22
6

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
980
395

React Native鸿蒙化仓库
C++
192
274

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
931
555

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
518

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0