Optax项目中softmax交叉熵损失函数对负无穷大logits的处理问题分析
2025-07-07 11:54:44作者:沈韬淼Beryl
问题背景
在深度学习框架Optax中,softmax交叉熵损失函数在处理包含负无穷大(-inf)的logits时存在一个数值稳定性问题。当某个logit为负无穷大且对应的标签为0时,当前实现会错误地返回NaN,而理论上这种情况下应该返回0。
问题重现
考虑以下简单示例:
logits = jnp.array([-jnp.inf, 0])
labels = jnp.array([0, 1])
当前Optax实现会返回NaN,而理论上应该返回0,因为:
- 第一个logit为负无穷大,但对应标签为0,根据交叉熵定义,0*log(0)应该被视为0
- 第二个logit为0,对应标签为1,这部分计算正常
技术分析
数学原理
交叉熵损失的数学表达式为:
H(p,q) = -Σ p_i * log(q_i)
其中p是真实分布(标签),q是预测分布(softmax输出)。当p_i=0时,无论q_i为何值(包括0),按照数学约定,该项应为0。
当前实现问题
Optax当前实现直接使用log_softmax后与标签相乘,当logits包含负无穷大时:
- 计算log_softmax会在对应位置得到负无穷大
- 与0标签相乘时,0*(-inf)会产生NaN,而不是预期的0
解决方案探讨
经过讨论,提出了几种可能的解决方案:
-
使用xlogy函数: 直接利用JAX提供的xlogy函数,它专门处理x*log(y)在x=0时的特殊情况
-
条件判断法: 在计算时显式检查标签是否为0,如果是则强制结果为0
-
数学等价变换: 将交叉熵表示为logsumexp减去加权logits和,并处理标签为0的情况
实现挑战
在尝试修复此问题时,遇到了以下技术挑战:
-
梯度计算问题: 简单的条件判断会破坏梯度传播,特别是对标签的梯度计算
-
数值稳定性: 修改后的实现在某些边缘情况下可能导致数值不稳定
-
向后兼容性: 改变广泛使用的基础损失函数可能影响现有模型的训练行为
最佳实践建议
对于需要在logits中使用负无穷大进行掩码的场景(如RL中的动作屏蔽),建议:
- 使用clip函数限制logits范围,避免出现极端值
- 如果必须使用负无穷大,考虑自定义损失函数处理特殊情况
- 在模型训练过程中监控损失值的变化,特别是出现NaN时
总结
数值稳定性是深度学习实现中的重要考虑因素。Optax中的softmax交叉熵函数在处理极端值时需要特别注意,特别是在标签为0的情况下。虽然理论上存在完美的数学解决方案,但在实际实现中需要平衡数学正确性、数值稳定性和计算效率。这个问题也提醒我们,在使用深度学习框架时,对于边缘情况的处理需要特别关注。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
147
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19