Optax项目中softmax交叉熵损失函数对负无穷大logits的处理问题分析
2025-07-07 04:24:29作者:沈韬淼Beryl
问题背景
在深度学习框架Optax中,softmax交叉熵损失函数在处理包含负无穷大(-inf)的logits时存在一个数值稳定性问题。当某个logit为负无穷大且对应的标签为0时,当前实现会错误地返回NaN,而理论上这种情况下应该返回0。
问题重现
考虑以下简单示例:
logits = jnp.array([-jnp.inf, 0])
labels = jnp.array([0, 1])
当前Optax实现会返回NaN,而理论上应该返回0,因为:
- 第一个logit为负无穷大,但对应标签为0,根据交叉熵定义,0*log(0)应该被视为0
- 第二个logit为0,对应标签为1,这部分计算正常
技术分析
数学原理
交叉熵损失的数学表达式为:
H(p,q) = -Σ p_i * log(q_i)
其中p是真实分布(标签),q是预测分布(softmax输出)。当p_i=0时,无论q_i为何值(包括0),按照数学约定,该项应为0。
当前实现问题
Optax当前实现直接使用log_softmax后与标签相乘,当logits包含负无穷大时:
- 计算log_softmax会在对应位置得到负无穷大
- 与0标签相乘时,0*(-inf)会产生NaN,而不是预期的0
解决方案探讨
经过讨论,提出了几种可能的解决方案:
-
使用xlogy函数: 直接利用JAX提供的xlogy函数,它专门处理x*log(y)在x=0时的特殊情况
-
条件判断法: 在计算时显式检查标签是否为0,如果是则强制结果为0
-
数学等价变换: 将交叉熵表示为logsumexp减去加权logits和,并处理标签为0的情况
实现挑战
在尝试修复此问题时,遇到了以下技术挑战:
-
梯度计算问题: 简单的条件判断会破坏梯度传播,特别是对标签的梯度计算
-
数值稳定性: 修改后的实现在某些边缘情况下可能导致数值不稳定
-
向后兼容性: 改变广泛使用的基础损失函数可能影响现有模型的训练行为
最佳实践建议
对于需要在logits中使用负无穷大进行掩码的场景(如RL中的动作屏蔽),建议:
- 使用clip函数限制logits范围,避免出现极端值
- 如果必须使用负无穷大,考虑自定义损失函数处理特殊情况
- 在模型训练过程中监控损失值的变化,特别是出现NaN时
总结
数值稳定性是深度学习实现中的重要考虑因素。Optax中的softmax交叉熵函数在处理极端值时需要特别注意,特别是在标签为0的情况下。虽然理论上存在完美的数学解决方案,但在实际实现中需要平衡数学正确性、数值稳定性和计算效率。这个问题也提醒我们,在使用深度学习框架时,对于边缘情况的处理需要特别关注。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248