AWS Deep Learning Containers发布PyTorch ARM64 CPU推理镜像v1.11
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组经过优化的深度学习容器镜像,这些镜像预装了流行的深度学习框架、依赖库和工具,可以帮助开发者快速部署深度学习工作负载。这些容器镜像针对AWS基础设施进行了性能优化,支持多种计算实例类型,包括CPU和GPU实例。
近日,AWS Deep Learning Containers项目发布了新的PyTorch ARM64架构CPU推理镜像版本v1.11。这个版本基于PyTorch 2.5.1框架构建,专门为ARM64架构的CPU实例优化,适用于在SageMaker服务上进行模型推理部署。
镜像技术细节
该镜像基于Ubuntu 22.04操作系统构建,预装了Python 3.11环境。主要包含以下核心组件:
- PyTorch框架:2.5.1版本(CPU优化版)
- TorchVision:0.20.1版本
- TorchAudio:2.5.1版本
- TorchServe:0.12.0版本(模型服务框架)
- Torch Model Archiver:0.12.0版本(模型打包工具)
镜像中还包含了常用的数据处理和科学计算库,如NumPy 2.1.3、Pandas 2.2.3、SciPy 1.14.1和scikit-learn 1.5.2,这些库为数据预处理和特征工程提供了完整支持。此外,还预装了OpenCV 4.10.0用于计算机视觉任务。
环境配置与依赖
该镜像的系统级依赖包括:
- GCC 11开发库(libgcc-11-dev)
- C++标准库(libstdc++6和libstdc++-11-dev)
- Emacs编辑器(可选开发工具)
Python环境通过pip管理,主要依赖包包括:
- Cython 3.0.11:用于编写C扩展
- FileLock 3.16.1:提供文件锁功能
- Ninja 1.11.1.1:构建系统
- Pillow 11.0.0:图像处理库
- PyYAML 6.0.1:YAML配置文件处理
适用场景
这个ARM64架构的PyTorch CPU推理镜像特别适合以下场景:
- 成本敏感的推理服务:ARM架构实例通常比x86实例更具成本效益
- 边缘计算部署:ARM架构在边缘设备上广泛使用
- 轻量级模型服务:不需要GPU加速的模型推理
- 开发测试环境:快速搭建一致的PyTorch测试环境
版本管理
该镜像提供了多个标签供用户选择,包括特定版本标签(如2.5.1-cpu-py311)和通用版本标签(如2.5-cpu-py311),方便用户在不同需求下灵活使用。镜像采用内容寻址存储,确保下载的镜像完整性。
这个版本的发布进一步丰富了AWS Deep Learning Containers的产品线,为ARM架构用户提供了更多选择,特别是在成本优化和边缘计算场景下。开发者可以基于这个镜像快速部署PyTorch模型推理服务,而无需关心底层环境配置问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00