AWS Deep Learning Containers发布PyTorch ARM64 CPU推理镜像v1.11
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组经过优化的深度学习容器镜像,这些镜像预装了流行的深度学习框架、依赖库和工具,可以帮助开发者快速部署深度学习工作负载。这些容器镜像针对AWS基础设施进行了性能优化,支持多种计算实例类型,包括CPU和GPU实例。
近日,AWS Deep Learning Containers项目发布了新的PyTorch ARM64架构CPU推理镜像版本v1.11。这个版本基于PyTorch 2.5.1框架构建,专门为ARM64架构的CPU实例优化,适用于在SageMaker服务上进行模型推理部署。
镜像技术细节
该镜像基于Ubuntu 22.04操作系统构建,预装了Python 3.11环境。主要包含以下核心组件:
- PyTorch框架:2.5.1版本(CPU优化版)
- TorchVision:0.20.1版本
- TorchAudio:2.5.1版本
- TorchServe:0.12.0版本(模型服务框架)
- Torch Model Archiver:0.12.0版本(模型打包工具)
镜像中还包含了常用的数据处理和科学计算库,如NumPy 2.1.3、Pandas 2.2.3、SciPy 1.14.1和scikit-learn 1.5.2,这些库为数据预处理和特征工程提供了完整支持。此外,还预装了OpenCV 4.10.0用于计算机视觉任务。
环境配置与依赖
该镜像的系统级依赖包括:
- GCC 11开发库(libgcc-11-dev)
- C++标准库(libstdc++6和libstdc++-11-dev)
- Emacs编辑器(可选开发工具)
Python环境通过pip管理,主要依赖包包括:
- Cython 3.0.11:用于编写C扩展
- FileLock 3.16.1:提供文件锁功能
- Ninja 1.11.1.1:构建系统
- Pillow 11.0.0:图像处理库
- PyYAML 6.0.1:YAML配置文件处理
适用场景
这个ARM64架构的PyTorch CPU推理镜像特别适合以下场景:
- 成本敏感的推理服务:ARM架构实例通常比x86实例更具成本效益
- 边缘计算部署:ARM架构在边缘设备上广泛使用
- 轻量级模型服务:不需要GPU加速的模型推理
- 开发测试环境:快速搭建一致的PyTorch测试环境
版本管理
该镜像提供了多个标签供用户选择,包括特定版本标签(如2.5.1-cpu-py311)和通用版本标签(如2.5-cpu-py311),方便用户在不同需求下灵活使用。镜像采用内容寻址存储,确保下载的镜像完整性。
这个版本的发布进一步丰富了AWS Deep Learning Containers的产品线,为ARM架构用户提供了更多选择,特别是在成本优化和边缘计算场景下。开发者可以基于这个镜像快速部署PyTorch模型推理服务,而无需关心底层环境配置问题。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









