PyTorch Tabular 使用教程
2024-08-10 08:21:33作者:胡易黎Nicole
项目介绍
PyTorch Tabular 是一个旨在简化并普及深度学习技术在表格数据上应用的库。该库的核心设计原则包括低阻力可用性、易于定制、可扩展性和易于部署。它建立在 PyTorch 和 PyTorch Lightning 等巨人的基础上,旨在为实际案例和研究提供一个标准的深度学习框架。
项目快速启动
安装
首先,你需要安装 PyTorch Tabular。你可以通过 pip 安装:
pip install pytorch-tabular
基本使用
以下是一个简单的示例,展示如何使用 PyTorch Tabular 进行表格数据的深度学习:
from pytorch_tabular import TabularModel
from pytorch_tabular.models import CategoryEmbeddingModel
# 定义模型配置
config = {
"input_dim": 10,
"output_dim": 1,
"embedding_dims": [(5, 10)],
"hidden_dims": [50, 20],
"dropout": 0.1
}
# 初始化模型
model = CategoryEmbeddingModel(config)
# 定义数据加载器
train_loader = ... # 你的训练数据加载器
val_loader = ... # 你的验证数据加载器
# 初始化 TabularModel
tabular_model = TabularModel(
model=model,
optimizer="adam",
loss_fn="mse",
metrics=["mae"],
train_loader=train_loader,
val_loader=val_loader
)
# 训练模型
tabular_model.fit(epochs=10)
应用案例和最佳实践
案例一:销售预测
在零售行业中,销售预测是一个常见的应用场景。使用 PyTorch Tabular,可以轻松构建一个深度学习模型来分析销售趋势。通过结合历史销售数据、促销活动、季节性因素等,模型可以提供有价值的分析。
案例二:客户流失分析
在电信和金融服务行业,客户流失分析是一个关键的应用。通过分析客户的交易历史、服务使用情况和客户反馈,PyTorch Tabular 可以帮助企业识别客户行为模式,并采取相应的措施来改善服务。
最佳实践
- 数据预处理:确保输入数据经过适当的预处理,包括缺失值处理、标准化和编码。
- 模型选择:根据问题的复杂性和数据的特点选择合适的模型架构。
- 超参数调优:使用网格搜索或随机搜索进行超参数调优,以获得最佳模型性能。
- 模型解释:利用 PyTorch Tabular 提供的解释工具来理解模型的决策过程。
典型生态项目
PyTorch Lightning
PyTorch Lightning 是一个轻量级的 PyTorch 封装,旨在简化深度学习模型的训练和验证过程。它与 PyTorch Tabular 无缝集成,提供了更高效的训练循环和更简洁的代码结构。
Pandas
Pandas 是一个强大的数据处理库,广泛用于数据清洗和预处理。在 PyTorch Tabular 中,Pandas 用于加载和处理表格数据,确保数据格式符合模型的输入要求。
TensorBoard
TensorBoard 是一个可视化工具,用于监控模型的训练过程和性能。通过集成 TensorBoard,可以实时查看损失函数和评估指标的变化,帮助调试和优化模型。
通过这些生态项目的结合使用,可以构建一个完整的深度学习工作流,从数据预处理到模型训练和评估,再到结果的可视化和解释。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0372Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
207
2.2 K

暂无简介
Dart
519
115

Ascend Extension for PyTorch
Python
62
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
577

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193