PyTorch Tabular 使用教程
2024-08-10 08:21:33作者:胡易黎Nicole
项目介绍
PyTorch Tabular 是一个旨在简化并普及深度学习技术在表格数据上应用的库。该库的核心设计原则包括低阻力可用性、易于定制、可扩展性和易于部署。它建立在 PyTorch 和 PyTorch Lightning 等巨人的基础上,旨在为实际案例和研究提供一个标准的深度学习框架。
项目快速启动
安装
首先,你需要安装 PyTorch Tabular。你可以通过 pip 安装:
pip install pytorch-tabular
基本使用
以下是一个简单的示例,展示如何使用 PyTorch Tabular 进行表格数据的深度学习:
from pytorch_tabular import TabularModel
from pytorch_tabular.models import CategoryEmbeddingModel
# 定义模型配置
config = {
"input_dim": 10,
"output_dim": 1,
"embedding_dims": [(5, 10)],
"hidden_dims": [50, 20],
"dropout": 0.1
}
# 初始化模型
model = CategoryEmbeddingModel(config)
# 定义数据加载器
train_loader = ... # 你的训练数据加载器
val_loader = ... # 你的验证数据加载器
# 初始化 TabularModel
tabular_model = TabularModel(
model=model,
optimizer="adam",
loss_fn="mse",
metrics=["mae"],
train_loader=train_loader,
val_loader=val_loader
)
# 训练模型
tabular_model.fit(epochs=10)
应用案例和最佳实践
案例一:销售预测
在零售行业中,销售预测是一个常见的应用场景。使用 PyTorch Tabular,可以轻松构建一个深度学习模型来分析销售趋势。通过结合历史销售数据、促销活动、季节性因素等,模型可以提供有价值的分析。
案例二:客户流失分析
在电信和金融服务行业,客户流失分析是一个关键的应用。通过分析客户的交易历史、服务使用情况和客户反馈,PyTorch Tabular 可以帮助企业识别客户行为模式,并采取相应的措施来改善服务。
最佳实践
- 数据预处理:确保输入数据经过适当的预处理,包括缺失值处理、标准化和编码。
- 模型选择:根据问题的复杂性和数据的特点选择合适的模型架构。
- 超参数调优:使用网格搜索或随机搜索进行超参数调优,以获得最佳模型性能。
- 模型解释:利用 PyTorch Tabular 提供的解释工具来理解模型的决策过程。
典型生态项目
PyTorch Lightning
PyTorch Lightning 是一个轻量级的 PyTorch 封装,旨在简化深度学习模型的训练和验证过程。它与 PyTorch Tabular 无缝集成,提供了更高效的训练循环和更简洁的代码结构。
Pandas
Pandas 是一个强大的数据处理库,广泛用于数据清洗和预处理。在 PyTorch Tabular 中,Pandas 用于加载和处理表格数据,确保数据格式符合模型的输入要求。
TensorBoard
TensorBoard 是一个可视化工具,用于监控模型的训练过程和性能。通过集成 TensorBoard,可以实时查看损失函数和评估指标的变化,帮助调试和优化模型。
通过这些生态项目的结合使用,可以构建一个完整的深度学习工作流,从数据预处理到模型训练和评估,再到结果的可视化和解释。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26