AFL++ 持续集成模糊测试的最佳实践与注意事项
概述
在软件开发过程中,模糊测试(Fuzzing)是一种重要的安全测试方法。AFL++作为一款先进的模糊测试工具,在持续集成(CI)环境中的应用需要特别注意一些关键问题。本文将深入探讨如何在CI环境中高效使用AFL++进行模糊测试,特别是如何处理种子语料库更新和会话恢复的问题。
种子语料库管理策略
当目标程序不断演进时,种子语料库也需要相应更新。常见的做法是将种子语料库与测试代码存放在同一代码仓库中。每次CI运行时,都会重新使用整个种子语料库初始化模糊测试器。虽然这种方法简单直接,但从长期来看效率不高。
更优的做法是:
- 保存完整的模糊测试输出(queue目录、fastresume.bin等)
- 在下一次运行前,将前一次的队列与增量更新的输入种子合并
fastresume.bin的使用限制
fastresume.bin文件是AFL++用于恢复模糊测试会话的关键文件,但使用时需要注意以下限制:
-
目标程序未变更:只有当目标二进制文件自上次运行以来未被重新编译时,fastresume.bin才有效。如果检测到目标程序有变化,AFL++会执行重新校准并忽略fastresume.bin中的数据。
-
新种子添加:使用fastresume.bin恢复会话时,不能直接通过命令行参数添加新种子。正确的做法是:
- 使用
-i -参数表示要恢复会话 - 通过
afl-addseeds工具添加新种子:afl-addseeds -i new_seeds_directory -o afl-fuzz-out-dir
- 使用
CI环境中模糊测试的注意事项
在持续集成环境中实施模糊测试需要特别注意以下几点:
-
时间限制:CI环境通常有时间限制,长时间的模糊测试会延迟代码合并流程,影响开发效率。
-
崩溃相关性:CI中发现的崩溃可能与当前PR的变更无关,这会导致开发人员困惑和不满。
-
更优实践:建议将模糊测试与CI分离,采用以下策略:
- 独立于CI系统运行模糊测试
- 定期(每日或每周)重建目标程序
- 维护并更新语料库
- 定期重启模糊测试器
技术实现建议
对于SQL解析器等特定目标的模糊测试,可以考虑以下优化方案:
-
语料库版本控制:将语料库与测试代码分开管理,使用独立的版本控制系统。
-
增量更新机制:实现自动化脚本,定期将新支持的语法和函数添加到语料库中。
-
结果分析流水线:建立自动化的崩溃分析流程,快速识别和分类发现的崩溃。
-
资源监控:监控模糊测试的资源使用情况,确保不会影响CI系统的整体性能。
通过遵循这些最佳实践,可以在保持开发效率的同时,充分利用模糊测试提高代码质量和安全性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00