AFL++ 持续集成模糊测试的最佳实践与注意事项
概述
在软件开发过程中,模糊测试(Fuzzing)是一种重要的安全测试方法。AFL++作为一款先进的模糊测试工具,在持续集成(CI)环境中的应用需要特别注意一些关键问题。本文将深入探讨如何在CI环境中高效使用AFL++进行模糊测试,特别是如何处理种子语料库更新和会话恢复的问题。
种子语料库管理策略
当目标程序不断演进时,种子语料库也需要相应更新。常见的做法是将种子语料库与测试代码存放在同一代码仓库中。每次CI运行时,都会重新使用整个种子语料库初始化模糊测试器。虽然这种方法简单直接,但从长期来看效率不高。
更优的做法是:
- 保存完整的模糊测试输出(queue目录、fastresume.bin等)
- 在下一次运行前,将前一次的队列与增量更新的输入种子合并
fastresume.bin的使用限制
fastresume.bin文件是AFL++用于恢复模糊测试会话的关键文件,但使用时需要注意以下限制:
-
目标程序未变更:只有当目标二进制文件自上次运行以来未被重新编译时,fastresume.bin才有效。如果检测到目标程序有变化,AFL++会执行重新校准并忽略fastresume.bin中的数据。
-
新种子添加:使用fastresume.bin恢复会话时,不能直接通过命令行参数添加新种子。正确的做法是:
- 使用
-i -参数表示要恢复会话 - 通过
afl-addseeds工具添加新种子:afl-addseeds -i new_seeds_directory -o afl-fuzz-out-dir
- 使用
CI环境中模糊测试的注意事项
在持续集成环境中实施模糊测试需要特别注意以下几点:
-
时间限制:CI环境通常有时间限制,长时间的模糊测试会延迟代码合并流程,影响开发效率。
-
崩溃相关性:CI中发现的崩溃可能与当前PR的变更无关,这会导致开发人员困惑和不满。
-
更优实践:建议将模糊测试与CI分离,采用以下策略:
- 独立于CI系统运行模糊测试
- 定期(每日或每周)重建目标程序
- 维护并更新语料库
- 定期重启模糊测试器
技术实现建议
对于SQL解析器等特定目标的模糊测试,可以考虑以下优化方案:
-
语料库版本控制:将语料库与测试代码分开管理,使用独立的版本控制系统。
-
增量更新机制:实现自动化脚本,定期将新支持的语法和函数添加到语料库中。
-
结果分析流水线:建立自动化的崩溃分析流程,快速识别和分类发现的崩溃。
-
资源监控:监控模糊测试的资源使用情况,确保不会影响CI系统的整体性能。
通过遵循这些最佳实践,可以在保持开发效率的同时,充分利用模糊测试提高代码质量和安全性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00