Higress项目中AI代理插件与LLM模拟服务器的集成实践
背景介绍
在云原生API网关Higress项目中,AI代理功能是一个重要特性。近期开发团队针对Dify平台的LLM(大语言模型)接口支持进行了功能增强,重点实现了与LLM模拟服务器的集成测试方案。这项工作涉及Wasm插件开发、模拟服务器实现以及端到端测试框架的完善。
技术实现要点
1. Wasm插件功能增强
开发团队在AI代理插件中发现并修复了一个关键问题:在将Dify平台响应转换为标准格式时,Created时间戳字段的处理存在缺陷。原实现未正确使用Dify响应中的CreatedAt字段,导致无法获取模拟服务器返回的mock值。
修正方案包括:
- 在responseDify2Standard方法中正确映射时间戳字段
- 在streamResponseDify2Standard方法中同步修正流式响应处理
- 添加对非流式请求的特定字段忽略机制
2. LLM模拟服务器开发
团队专门开发了LLM模拟服务器来支持测试工作,主要特性包括:
- 实现了Dify平台的Completion类型接口模拟
- 支持标准的兼容响应格式
- 提供可预测的mock数据返回
- 容器化部署方案
3. 端到端测试框架
测试方案采用了Higress的e2e测试框架,关键实现包括:
- 测试用例同时覆盖流式和非流式输出场景
- 本地测试环境配置优化
- 测试断言逻辑增强
- 与CI/CD流程集成
技术挑战与解决方案
在实现过程中,团队遇到了几个典型的技术挑战:
插件本地测试问题:最初尝试使用本地构建的Wasm插件进行测试时,发现请求无法正确路由到模拟服务器。解决方案是临时切换为官方镜像进行验证,确认基础功能正常后再排查本地构建问题。
时间戳一致性:由于响应中的时间戳字段会导致测试断言失败,团队实现了字段忽略机制,专门处理这类非功能性字段的验证。
流式响应处理:相比普通请求,流式响应需要特殊处理。团队暂时采用忽略特定测试case的方式,待后续完善。
最佳实践
基于此项目经验,总结出以下云原生AI网关开发的最佳实践:
-
模拟服务先行:先构建符合规范的模拟服务,再开发实际功能,有助于接口设计验证。
-
渐进式测试:从官方镜像开始测试,逐步过渡到本地构建,便于问题定位。
-
关注数据转换:不同AI平台间的数据格式转换是常见痛点,需要特别测试验证。
-
测试覆盖率:同时考虑正常流和异常流,包括流式和非流式场景。
项目意义
本次集成工作为Higress项目的AI能力带来了显著提升:
- 完善了对Dify平台的支持
- 建立了可扩展的LLM测试框架
- 提高了AI相关功能的测试覆盖率
- 为后续更多AI平台集成提供了参考实现
这种以测试驱动开发(TDD)的方式,不仅保证了功能质量,也为Higress在AI时代的API网关竞争中奠定了技术基础。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00