Higress项目中AI代理插件与LLM模拟服务器的集成实践
背景介绍
在云原生API网关Higress项目中,AI代理功能是一个重要特性。近期开发团队针对Dify平台的LLM(大语言模型)接口支持进行了功能增强,重点实现了与LLM模拟服务器的集成测试方案。这项工作涉及Wasm插件开发、模拟服务器实现以及端到端测试框架的完善。
技术实现要点
1. Wasm插件功能增强
开发团队在AI代理插件中发现并修复了一个关键问题:在将Dify平台响应转换为标准格式时,Created时间戳字段的处理存在缺陷。原实现未正确使用Dify响应中的CreatedAt字段,导致无法获取模拟服务器返回的mock值。
修正方案包括:
- 在responseDify2Standard方法中正确映射时间戳字段
- 在streamResponseDify2Standard方法中同步修正流式响应处理
- 添加对非流式请求的特定字段忽略机制
2. LLM模拟服务器开发
团队专门开发了LLM模拟服务器来支持测试工作,主要特性包括:
- 实现了Dify平台的Completion类型接口模拟
- 支持标准的兼容响应格式
- 提供可预测的mock数据返回
- 容器化部署方案
3. 端到端测试框架
测试方案采用了Higress的e2e测试框架,关键实现包括:
- 测试用例同时覆盖流式和非流式输出场景
- 本地测试环境配置优化
- 测试断言逻辑增强
- 与CI/CD流程集成
技术挑战与解决方案
在实现过程中,团队遇到了几个典型的技术挑战:
插件本地测试问题:最初尝试使用本地构建的Wasm插件进行测试时,发现请求无法正确路由到模拟服务器。解决方案是临时切换为官方镜像进行验证,确认基础功能正常后再排查本地构建问题。
时间戳一致性:由于响应中的时间戳字段会导致测试断言失败,团队实现了字段忽略机制,专门处理这类非功能性字段的验证。
流式响应处理:相比普通请求,流式响应需要特殊处理。团队暂时采用忽略特定测试case的方式,待后续完善。
最佳实践
基于此项目经验,总结出以下云原生AI网关开发的最佳实践:
-
模拟服务先行:先构建符合规范的模拟服务,再开发实际功能,有助于接口设计验证。
-
渐进式测试:从官方镜像开始测试,逐步过渡到本地构建,便于问题定位。
-
关注数据转换:不同AI平台间的数据格式转换是常见痛点,需要特别测试验证。
-
测试覆盖率:同时考虑正常流和异常流,包括流式和非流式场景。
项目意义
本次集成工作为Higress项目的AI能力带来了显著提升:
- 完善了对Dify平台的支持
- 建立了可扩展的LLM测试框架
- 提高了AI相关功能的测试覆盖率
- 为后续更多AI平台集成提供了参考实现
这种以测试驱动开发(TDD)的方式,不仅保证了功能质量,也为Higress在AI时代的API网关竞争中奠定了技术基础。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00