Super-Gradients项目中使用OpenVINO进行推理及后处理优化指南
2025-06-11 05:03:02作者:薛曦旖Francesca
概述
在使用Super-Gradients项目进行目标检测模型推理时,开发者经常会遇到如何将PyTorch模型转换为OpenVINO格式并正确处理推理结果的问题。本文将详细介绍如何将训练好的模型转换为OpenVINO格式,并正确处理推理输出结果。
OpenVINO推理流程
当使用OpenVINO进行推理时,通常会得到两个关键输出张量:
- 边界框坐标张量:形状为(1, 8400, 4),包含预测框的坐标信息
- 类别概率张量:形状为(1, 8400, 4),包含每个预测框对应各类别的概率值
典型的推理代码如下:
import cv2
import numpy as np
import openvino as ov
# 加载并预处理图像
image = cv2.imread("Flat_00002.jpg")
image_resized = cv2.resize(image, (640, 640))
image_transposed = np.transpose(image_resized, (2, 0, 1))
image_normalized = (image_transposed / 255).astype(np.float32)
image_expanded = np.expand_dims(image_normalized, axis=0)
# 加载并编译OpenVINO模型
compiled_model = ov.compile_model("openVino.xml")
# 执行推理
result = compiled_model(image_expanded)
后处理挑战
直接使用OpenVINO推理得到的原始输出通常需要进行非极大值抑制(NMS)等后处理操作,以过滤掉重叠的预测框和低置信度的预测。常见的后处理步骤包括:
- 置信度阈值过滤:去除低于设定阈值的预测
- 非极大值抑制:去除高度重叠的冗余预测框
- 类别选择:为每个预测框选择最可能的类别
解决方案
方案一:导出包含后处理的ONNX模型
更推荐的做法是在模型导出为ONNX格式时就包含后处理步骤,这样转换后的OpenVINO模型可以直接输出经过NMS处理的结果。这种方法有多个优势:
- 简化推理流程:无需在应用代码中实现复杂的后处理逻辑
- 性能优化:后处理可以充分利用OpenVINO的优化能力
- 一致性保证:避免不同平台后处理实现差异导致的结果不一致
方案二:手动实现后处理
如果必须手动处理后处理,可以参考以下步骤:
def process_outputs(raw_outputs, score_threshold=0.5, iou_threshold=0.4):
# 解析原始输出
boxes = raw_outputs[0][0] # 形状(8400, 4)
scores = raw_outputs[1][0] # 形状(8400, 4)
# 转换为xywh或xyxy格式
# 这里需要根据模型实际输出格式进行调整
# 应用置信度阈值
max_scores = np.max(scores, axis=1)
keep_indices = max_scores > score_threshold
# 执行NMS
# 可以使用OpenCV或自定义实现
from cv2 import dnn
indices = dnn.NMSBoxes(boxes[keep_indices],
max_scores[keep_indices],
score_threshold,
iou_threshold)
return boxes[indices], scores[indices]
模型量化建议
关于将模型转换为INT8格式的问题,OpenVINO确实支持模型量化。对于已有PTQ(训练后量化)和QAT(量化感知训练)的ONNX模型,可以使用OpenVINO的模型优化工具进行转换:
- 对于PTQ模型,可以使用OpenVINO的Post-Training Optimization Tool
- 对于QAT模型,确保在导出ONNX时保留了量化信息
量化后的模型通常会显著减小模型大小并提高推理速度,但可能会带来轻微的精度下降。
最佳实践建议
- 在模型训练阶段就考虑最终的部署需求
- 尽量将后处理包含在模型图中导出
- 对量化模型进行充分的精度验证
- 考虑使用OpenVINO的基准测试工具评估不同精度模型的性能
通过遵循这些实践,可以确保Super-Gradients项目训练出的模型能够高效地在OpenVINO运行时上执行,并获得预期的检测结果。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1