Super-Gradients中YOLO-NAS模型的多标签预测优化
2025-06-11 11:06:11作者:瞿蔚英Wynne
背景介绍
Super-Gradients是一个强大的深度学习训练库,提供了多种先进的计算机视觉模型实现。其中YOLO-NAS作为目标检测领域的新星模型,在速度和精度之间取得了很好的平衡。在实际应用中,开发者有时需要限制每个边界框只能预测一个类别标签,而不是默认的多标签预测方式。
问题发现
在Super-Gradients库的早期版本中,YOLO-NAS模型的训练阶段可以通过PPYoloEPostPredictionCallback配置单标签预测模式,但在推理阶段却缺乏相应的参数控制。这导致训练和推理行为不一致,影响了模型在实际应用中的表现。
技术实现分析
YOLO-NAS模型的后处理阶段通过PPYoloEPostPredictionCallback类完成预测结果的解码和非极大值抑制(NMS)处理。该类的核心功能包括:
- 将模型输出的原始预测转换为边界框坐标
- 应用置信度阈值过滤低质量预测
- 执行非极大值抑制去除冗余框
- 处理类别预测结果
在原始实现中,该回调类支持通过multi_label_per_box参数控制是否允许多标签预测,但在模型推理接口中未暴露此参数。
解决方案演进
开发团队通过以下步骤解决了这一问题:
- 识别到推理接口与训练配置不一致的问题
- 在模型预测方法中新增multi_label_per_box参数
- 确保该参数能够正确传递到后处理回调
- 保持与训练阶段行为的兼容性
使用示例
更新后的版本中,用户可以通过以下方式使用单标签预测模式:
model = models.get("yolo_nas_s",
checkpoint_path="path_to_checkpoint",
num_classes=NUM_CLASSES)
with torch.no_grad():
predictions = model.predict(
image_paths,
conf=0.1,
batch_size=8,
iou=0.5,
multi_label_per_box=False, # 关键参数
max_predictions=50,
nms_top_k=300,
nms_threshold=0.7
)
技术意义
这一改进具有多方面的重要意义:
- 一致性保证:确保了训练和推理阶段的行为一致性
- 灵活性提升:为不同应用场景提供了更多选择
- 性能优化:单标签模式可以减少后处理计算量
- 易用性增强:简化了特殊需求的实现方式
最佳实践建议
对于需要使用YOLO-NAS单标签模式的开发者,建议:
- 确保使用Super-Gradients 3.6或更高版本
- 在训练和推理阶段保持multi_label_per_box参数一致
- 对于明确不需要多标签的场景,使用False可以提升效率
- 在评估模型性能时,注意比较两种模式的效果差异
总结
Super-Gradients库对YOLO-NAS模型的这一改进,体现了框架对开发者实际需求的快速响应能力。通过暴露更多的后处理控制参数,使得这一先进的目标检测模型能够更好地适应各种应用场景。这也展示了开源社区如何通过持续的迭代优化,不断提升工具的实用性和灵活性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355