Locust性能测试工具图表颜色优化方案分析
Locust作为一款流行的开源负载测试工具,其现代UI界面在最新版本中出现了图表颜色区分度不足的问题。本文将深入分析该问题的技术背景及解决方案。
问题现象
在Locust 2.23.0版本的现代UI界面中,平均响应时间与95百分位响应时间的图表曲线使用了相同的颜色显示。这种视觉上的重叠使得用户在分析性能数据时难以快速区分这两项关键指标。
技术分析
Locust的图表显示系统采用动态颜色分配机制,当显示多个性能指标时,系统会自动为每个指标分配不同的颜色。然而,当前实现中存在两个技术细节需要优化:
-
颜色分配算法:系统未对特定指标(如平均响应时间)进行颜色预留,导致在显示多个百分位指标时可能出现颜色冲突。
-
显示数量限制:旧版UI曾限制最多显示两个百分位指标,而新版UI取消了这一限制,增加了颜色冲突的可能性。
解决方案
开发团队提出了以下改进方案:
-
优化颜色分配:为不同指标类型预设颜色方案,确保核心指标(如平均响应时间、50百分位、95百分位等)具有高区分度的视觉表现。
-
增加显示限制:将最大可显示的百分位指标数量限制为6个,在保证功能完整性的同时避免视觉混乱。
-
视觉样式改进:采用更丰富的线型组合(如实线、虚线等)配合颜色区分,增强图表可读性。
技术决策考量
关于是否允许用户禁用平均响应时间显示,开发团队经过讨论认为:
-
平均响应时间作为最基本的性能指标,对大多数测试场景都具有重要意义。
-
当前架构中,百分位显示配置仅支持整数参数,要实现禁用功能需要额外的开发工作。
-
从产品定位考虑,保持核心指标的默认显示更符合大多数用户的使用习惯。
总结
Locust团队通过优化图表颜色方案,有效解决了现代UI中的指标区分问题。这一改进体现了开源项目对用户体验的持续关注,同时也展示了在技术决策中平衡功能完整性与界面简洁性的思考过程。对于性能测试工具而言,清晰直观的数据可视化对测试结果分析至关重要,这一优化将显著提升Locust在实际测试工作中的使用体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00