Locust性能测试工具中图表数据持续记录问题分析
问题现象
在使用Locust进行性能测试时,当设置了定时运行任务(如2.5小时)后,测试任务虽然按计划结束,但Web界面上的图表数据显示时间线却持续延长到当前查看时间。例如,测试实际运行时间为22:01:07至00:31:07,但在08:09:00查看报告时,图表时间线却显示到了08:09:00。
问题根源
经过分析,这个问题主要源于Locust的统计更新机制。在html.py文件中,存在一个持续更新统计数据的函数调用update_stats_history,该函数原本设计用于在测试运行时实时更新统计数据,但在测试结束后仍然继续工作,导致图表时间线异常延长。
解决方案
目前有两种可行的解决思路:
-
代码修改方案:注释掉html.py文件中的
update_stats_history(environment.runner, end_ts)这一行代码。这个修改阻止了测试结束后统计数据的持续更新,但需要注意:- 修改后刷新Web界面可能导致统计数据不显示
- 需要重新编译部署修改后的代码
-
等待官方修复:Locust开发团队已经注意到这个问题,但由于当前开发资源有限,修复可能需要等待后续版本更新。
技术原理深入
Locust的统计系统采用实时更新机制,通过update_stats_history函数将运行时的性能数据记录到历史记录中。这个机制在测试运行时非常有用,可以实时反映系统性能变化。但当测试结束后,这个机制应该自动停止,而当前版本中缺少了这个终止逻辑。
在分布式测试环境下,这个问题可能更加复杂,因为主节点需要持续收集来自各个工作节点的统计数据。正确的实现应该是在测试停止时发送明确的终止信号,通知所有组件停止数据收集和更新。
影响评估
这个问题主要影响测试报告的准确性,特别是:
- 图表时间轴显示异常
- 可能导致性能指标计算错误(如平均响应时间等)
- 在长时间保持Web界面打开时,内存占用可能持续增加
但对于实际测试结果的核心数据(如总请求数、失败率等)没有影响。
最佳实践建议
对于当前版本的用户,建议:
- 测试结束后立即保存报告数据
- 不要长时间保持Web界面打开
- 如果需要修改代码,注意备份原始文件
- 关注Locust的版本更新,及时升级到修复此问题的版本
总结
Locust作为流行的性能测试工具,其实时统计功能非常强大。这个图表数据显示问题虽然不影响核心测试功能,但会影响报告的可读性。理解其背后的统计机制有助于我们更好地使用这个工具,并在必要时进行适当的调整。随着Locust的持续发展,相信这个问题会在未来的版本中得到完善解决。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00