首页
/ GLM-4模型LoRA微调后vLLM推理异常问题分析与解决方案

GLM-4模型LoRA微调后vLLM推理异常问题分析与解决方案

2025-06-03 18:29:37作者:宣聪麟

问题背景

在GLM-4大语言模型的使用过程中,开发者发现一个值得注意的技术现象:当使用LoRA(低秩适应)方法对GLM-4进行微调后,虽然可以通过原生Transformer后端正常进行推理,但在使用vLLM推理引擎时却出现了输出异常的情况。具体表现为vLLM推理结果全部为空白或无效输出。

环境配置

该问题出现在以下典型环境中:

  • Python 3.10
  • Transformers库4.44.0版本
  • PyTorch 2.4.0框架
  • vLLM 0.6.1推理引擎

问题分析

经过技术排查,发现该问题涉及多个层面的技术因素:

  1. 版本兼容性问题:GLM-4模型与vLLM 0.6.1版本存在兼容性问题。虽然基础模型在vLLM 0.6.1上可以正常运行,但经过LoRA微调后的模型则无法正常工作。

  2. LoRA权重加载机制:vLLM的openai_api_server.py默认实现不支持LoRA权重的加载,这是导致微调后模型推理异常的主要原因。

  3. 版本降级尝试:开发者尝试将vLLM降级到0.5.3版本,但问题依然存在,说明这不是简单的版本兼容问题,而是涉及更深层次的技术实现。

解决方案

针对这一问题,技术团队提供了两种可行的解决方案:

方案一:使用专用推理脚本

对于LoRA微调后的GLM-4模型,建议使用项目提供的专用推理脚本:

finetune_demo/inference.py

该脚本专门针对LoRA微调场景进行了优化,能够正确处理微调后的权重加载和推理过程。

方案二:修改vLLM服务代码

对于需要继续使用vLLM进行推理的场景,可以通过修改vLLM的服务代码来支持LoRA权重加载。具体实现方式如下:

  1. 在glm_server.py中添加LoRARequest处理逻辑
  2. 在生成请求中明确指定LoRA配置参数

示例代码修改:

lora_request = LoRARequest(
    lora_name="lora",
    lora_int_id=1,
    lora_local_path=LORA_PATH)
async for output in engine.generate(
    inputs=inputs,
    sampling_params=sampling_params,
    request_id=f"{time.time()}",
    lora_request=lora_request):
    # 处理输出逻辑

技术建议

  1. 版本选择:目前GLM-4对vLLM的支持仍在完善中,建议关注官方更新,及时获取最新兼容性信息。

  2. 微调策略:如果项目必须使用vLLM进行推理,可以考虑在微调前进行充分测试,或选择其他兼容性更好的微调方法。

  3. 监控机制:实现输出验证机制,确保推理结果的正确性,特别是在使用LoRA等参数高效微调技术时。

总结

GLM-4模型与vLLM推理引擎的配合使用在LoRA微调场景下存在特定技术挑战。通过使用专用推理脚本或适当修改vLLM服务代码,开发者可以解决微调后模型推理异常的问题。随着GLM-4生态的不断完善,预期未来版本将提供更完善的vLLM支持。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8