GLM-4模型LoRA微调后vLLM推理异常问题分析与解决方案
问题背景
在GLM-4大语言模型的使用过程中,开发者发现一个值得注意的技术现象:当使用LoRA(低秩适应)方法对GLM-4进行微调后,虽然可以通过原生Transformer后端正常进行推理,但在使用vLLM推理引擎时却出现了输出异常的情况。具体表现为vLLM推理结果全部为空白或无效输出。
环境配置
该问题出现在以下典型环境中:
- Python 3.10
- Transformers库4.44.0版本
- PyTorch 2.4.0框架
- vLLM 0.6.1推理引擎
问题分析
经过技术排查,发现该问题涉及多个层面的技术因素:
-
版本兼容性问题:GLM-4模型与vLLM 0.6.1版本存在兼容性问题。虽然基础模型在vLLM 0.6.1上可以正常运行,但经过LoRA微调后的模型则无法正常工作。
-
LoRA权重加载机制:vLLM的openai_api_server.py默认实现不支持LoRA权重的加载,这是导致微调后模型推理异常的主要原因。
-
版本降级尝试:开发者尝试将vLLM降级到0.5.3版本,但问题依然存在,说明这不是简单的版本兼容问题,而是涉及更深层次的技术实现。
解决方案
针对这一问题,技术团队提供了两种可行的解决方案:
方案一:使用专用推理脚本
对于LoRA微调后的GLM-4模型,建议使用项目提供的专用推理脚本:
finetune_demo/inference.py
该脚本专门针对LoRA微调场景进行了优化,能够正确处理微调后的权重加载和推理过程。
方案二:修改vLLM服务代码
对于需要继续使用vLLM进行推理的场景,可以通过修改vLLM的服务代码来支持LoRA权重加载。具体实现方式如下:
- 在glm_server.py中添加LoRARequest处理逻辑
- 在生成请求中明确指定LoRA配置参数
示例代码修改:
lora_request = LoRARequest(
lora_name="lora",
lora_int_id=1,
lora_local_path=LORA_PATH)
async for output in engine.generate(
inputs=inputs,
sampling_params=sampling_params,
request_id=f"{time.time()}",
lora_request=lora_request):
# 处理输出逻辑
技术建议
-
版本选择:目前GLM-4对vLLM的支持仍在完善中,建议关注官方更新,及时获取最新兼容性信息。
-
微调策略:如果项目必须使用vLLM进行推理,可以考虑在微调前进行充分测试,或选择其他兼容性更好的微调方法。
-
监控机制:实现输出验证机制,确保推理结果的正确性,特别是在使用LoRA等参数高效微调技术时。
总结
GLM-4模型与vLLM推理引擎的配合使用在LoRA微调场景下存在特定技术挑战。通过使用专用推理脚本或适当修改vLLM服务代码,开发者可以解决微调后模型推理异常的问题。随着GLM-4生态的不断完善,预期未来版本将提供更完善的vLLM支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00