Super-Gradients项目中YOLO-NAS-Pose模型训练要点解析
2025-06-11 20:31:48作者:翟江哲Frasier
YOLO-NAS-Pose作为Super-Gradients项目中的重要姿态估计模型,在实际训练过程中有几个关键参数需要特别注意。本文将深入分析这些训练参数的设置原理及调整策略,帮助开发者更好地使用该模型。
多GPU与单GPU训练的差异处理
在默认配置中,模型训练参数针对8块NVIDIA RTX 3090 GPU进行了优化。当开发者使用单GPU训练时,需要特别注意以下几点:
-
批量大小理解:配置文件中设置的batch_size=48是单GPU的批量大小,而非所有GPU的总和。这意味着8GPU训练时实际总批量大小为384(48×8)。
-
学习率调整:由于批量大小直接影响梯度更新的稳定性,当使用单GPU时,建议将学习率按比例降低。具体来说,应将initial_lr参数调整为原值的1/8,以保持与多GPU训练相似的收敛特性。
-
最终学习率比例:cosine_final_lr_ratio参数表示学习率衰减的最终比例,这个参数不需要随GPU数量调整,因为它是一个相对值而非绝对值。
训练周期与收敛观察
YOLO-NAS-Pose的默认训练周期设置为1000个epoch,并包含早停机制。根据实际训练观察:
- 在多GPU环境下,模型通常在200-300个epoch后开始进入性能平台期
- 单GPU训练由于批量较小,可能需要更多epoch才能达到相似效果
- 建议开发者密切监控AP(平均精度)曲线,当指标趋于平稳时可考虑提前终止训练
数据增强与填充策略
训练和验证阶段采用了不同的填充策略:
- 训练阶段:使用'center'填充模式,这有助于模型学习到更均衡的特征表示
- 验证阶段:采用'bottom_right'填充模式,这种选择更多出于实现便利性考虑,没有特定的理论依据
开发者可以根据实际需求调整这些填充策略,但需要注意保持训练和推理阶段的一致性,避免引入不必要的偏差。
实际训练建议
对于资源有限的开发者,建议采取以下训练策略:
- 从较小的学习率开始,逐步调整至最佳值
- 使用更小的批量大小时,适当增加训练epoch数量
- 充分利用早停机制,避免不必要的计算资源浪费
- 定期保存模型检查点,便于后续分析和微调
通过合理调整这些训练参数,开发者可以在有限的计算资源下,依然能够训练出性能优异的YOLO-NAS-Pose模型。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217