Super-Gradients项目中YOLO-NAS-Pose模型训练要点解析
2025-06-11 13:36:54作者:翟江哲Frasier
YOLO-NAS-Pose作为Super-Gradients项目中的重要姿态估计模型,在实际训练过程中有几个关键参数需要特别注意。本文将深入分析这些训练参数的设置原理及调整策略,帮助开发者更好地使用该模型。
多GPU与单GPU训练的差异处理
在默认配置中,模型训练参数针对8块NVIDIA RTX 3090 GPU进行了优化。当开发者使用单GPU训练时,需要特别注意以下几点:
-
批量大小理解:配置文件中设置的batch_size=48是单GPU的批量大小,而非所有GPU的总和。这意味着8GPU训练时实际总批量大小为384(48×8)。
-
学习率调整:由于批量大小直接影响梯度更新的稳定性,当使用单GPU时,建议将学习率按比例降低。具体来说,应将initial_lr参数调整为原值的1/8,以保持与多GPU训练相似的收敛特性。
-
最终学习率比例:cosine_final_lr_ratio参数表示学习率衰减的最终比例,这个参数不需要随GPU数量调整,因为它是一个相对值而非绝对值。
训练周期与收敛观察
YOLO-NAS-Pose的默认训练周期设置为1000个epoch,并包含早停机制。根据实际训练观察:
- 在多GPU环境下,模型通常在200-300个epoch后开始进入性能平台期
- 单GPU训练由于批量较小,可能需要更多epoch才能达到相似效果
- 建议开发者密切监控AP(平均精度)曲线,当指标趋于平稳时可考虑提前终止训练
数据增强与填充策略
训练和验证阶段采用了不同的填充策略:
- 训练阶段:使用'center'填充模式,这有助于模型学习到更均衡的特征表示
- 验证阶段:采用'bottom_right'填充模式,这种选择更多出于实现便利性考虑,没有特定的理论依据
开发者可以根据实际需求调整这些填充策略,但需要注意保持训练和推理阶段的一致性,避免引入不必要的偏差。
实际训练建议
对于资源有限的开发者,建议采取以下训练策略:
- 从较小的学习率开始,逐步调整至最佳值
- 使用更小的批量大小时,适当增加训练epoch数量
- 充分利用早停机制,避免不必要的计算资源浪费
- 定期保存模型检查点,便于后续分析和微调
通过合理调整这些训练参数,开发者可以在有限的计算资源下,依然能够训练出性能优异的YOLO-NAS-Pose模型。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133