AWS Deep Learning Containers发布PyTorch ARM64架构EC2推理镜像v1.8版本
AWS Deep Learning Containers(DLC)项目为机器学习开发者提供了预构建的深度学习环境容器镜像,这些镜像经过优化可直接在AWS云平台上运行。该项目支持多种主流深度学习框架和硬件配置,极大简化了开发者在云上部署深度学习应用的过程。
近日,AWS DLC项目发布了针对ARM64架构EC2实例的PyTorch推理镜像v1.8版本。这一更新为使用ARM处理器的AWS EC2实例用户带来了PyTorch 2.6.0框架的最新支持,同时提供了Python 3.12的运行环境。
镜像版本与技术规格
本次发布的镜像包含两个主要变体:
-
CPU版本镜像:基于Ubuntu 22.04系统,预装了PyTorch 2.6.0的CPU版本,适合不需要GPU加速的推理场景。该镜像包含了torchvision 0.21.0和torchaudio 2.6.0等配套库,以及NumPy、SciPy等科学计算基础包。
-
GPU版本镜像:同样基于Ubuntu 22.04系统,但针对CUDA 12.4进行了优化,预装了PyTorch 2.6.0的CUDA 12.4版本。除了包含CPU版本的所有功能外,还额外集成了cuDNN等GPU加速库,能够充分利用NVIDIA GPU的并行计算能力。
关键技术组件与优化
这两个镜像都经过了AWS的专门优化,主要体现在以下几个方面:
-
Python环境:采用了最新的Python 3.12版本,提供了更好的性能和语言特性支持。同时预装了setuptools、pip等基础工具,确保开发者可以方便地安装额外依赖。
-
PyTorch生态系统:除了核心的PyTorch框架外,还包含了完整的PyTorch生态系统工具:
- torchvision:提供计算机视觉相关的数据集、模型架构和图像变换工具
- torchaudio:为音频处理任务提供支持
- TorchServe:专业的PyTorch模型服务工具,简化模型部署流程
- Torch Model Archiver:模型打包工具,便于模型分发
-
开发工具链:镜像中预装了完整的开发工具,包括Cython、Ninja等构建工具,以及AWS CLI等云服务工具,方便开发者进行模型调试和部署。
-
科学计算支持:预装了NumPy 2.2.3、SciPy 1.15.2等科学计算基础库,以及OpenCV 4.11.0等计算机视觉库,覆盖了大多数深度学习应用场景的需求。
适用场景与优势
这些ARM64架构的PyTorch推理镜像特别适合以下场景:
-
成本敏感型应用:ARM架构的EC2实例通常比x86实例更具成本效益,特别适合大规模部署的推理服务。
-
边缘计算场景:ARM架构在边缘设备中广泛使用,这些镜像为边缘AI应用的开发和迁移提供了便利。
-
能效优先场景:ARM处理器以高能效比著称,适合需要长时间运行且对能耗敏感的应用。
-
模型服务标准化:预装的TorchServe工具可以帮助团队标准化模型服务流程,提高部署效率。
总结
AWS Deep Learning Containers项目发布的这一系列PyTorch ARM64架构镜像,为开发者提供了开箱即用的深度学习推理环境。通过预装优化的软件栈和工具链,开发者可以专注于模型开发和业务逻辑,而不必花费大量时间在环境配置上。特别是对使用ARM架构EC2实例的用户来说,这些镜像提供了性能与成本之间的良好平衡,是构建高效AI服务的理想选择。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00