AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,这些镜像经过优化和测试,可直接用于训练和推理任务。它们集成了流行的深度学习框架、工具和库,帮助开发者快速部署深度学习应用,而无需花费大量时间在环境配置上。
近日,AWS DLC项目发布了PyTorch 2.5.1推理专用镜像的两个新版本,分别支持CPU和GPU环境。这些镜像基于Ubuntu 22.04操作系统,并预装了Python 3.11环境,为开发者提供了开箱即用的PyTorch推理环境。
镜像版本详情
CPU版本镜像
CPU版本镜像(pytorch-inference:2.5.1-cpu-py311-ubuntu22.04-sagemaker-v1.8)专为无GPU环境设计,包含了PyTorch 2.5.1的CPU版本及其相关生态组件。主要特点包括:
- 基础环境:Ubuntu 22.04操作系统
- Python版本:3.11
- 核心框架:PyTorch 2.5.1(CPU版本)
- 配套工具:torchvision 0.20.1、torchaudio 2.5.1
- 模型服务:torchserve 0.12.0和torch-model-archiver 0.12.0
- 科学计算库:NumPy 2.1.3、SciPy 1.14.1、pandas 2.2.3
- 图像处理:OpenCV 4.10.0.84、Pillow 11.0.0
- 机器学习:scikit-learn 1.5.2
GPU版本镜像
GPU版本镜像(pytorch-inference:2.5.1-gpu-py311-cu124-ubuntu22.04-sagemaker-v1.8)针对CUDA 12.4环境进行了优化,包含以下关键组件:
- CUDA支持:12.4版本
- cuDNN:9.x版本
- 核心框架:PyTorch 2.5.1(CUDA 12.4版本)
- 其他组件与CPU版本保持同步,确保开发体验一致
技术亮点
-
Python 3.11支持:两个镜像均基于Python 3.11构建,充分利用了新版本Python的性能改进和特性。
-
PyTorch生态系统完整性:除了核心PyTorch框架外,镜像还包含了完整的PyTorch生态系统工具,如torchserve模型服务框架和torch-model-archiver模型打包工具,方便生产环境部署。
-
科学计算全栈支持:预装了从数据处理(pandas)到科学计算(NumPy、SciPy)再到机器学习(scikit-learn)的全套工具链,满足各类深度学习应用场景需求。
-
生产就绪:包含了AWS CLI、boto3等AWS工具,便于与AWS云服务集成,同时预装了常用开发工具如emacs。
-
版本一致性:CPU和GPU版本的配套库版本保持一致(如torchvision、torchaudio等),确保代码在不同环境间迁移时行为一致。
应用场景
这些预构建的PyTorch推理镜像特别适合以下场景:
-
模型即服务部署:使用内置的torchserve框架快速将训练好的PyTorch模型部署为RESTful服务。
-
批量推理任务:利用预装的科学计算库处理大规模数据推理任务。
-
云原生应用:在AWS SageMaker等云服务上快速构建和部署深度学习应用。
-
开发测试环境:为团队提供一致的开发环境,避免"在我机器上能运行"的问题。
AWS Deep Learning Containers的这些新版本镜像,通过提供经过充分测试和优化的PyTorch环境,显著降低了开发者部署深度学习应用的门槛,让团队可以更专注于模型开发和业务逻辑实现,而非基础环境配置。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00