AWS Deep Learning Containers发布PyTorch 2.6.0 CPU版ARM64架构镜像
2025-07-06 14:19:08作者:乔或婵
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习环境容器镜像,旨在简化机器学习工作负载的部署和管理。这些容器镜像经过优化,包含了主流深度学习框架及其依赖项,能够直接在AWS云服务上运行,为用户节省环境配置时间。
近日,AWS DLC项目发布了针对ARM64架构的PyTorch 2.6.0 CPU版本容器镜像,基于Ubuntu 22.04操作系统构建。这一版本特别为SageMaker服务优化,为使用ARM架构处理器的用户提供了高效的深度学习推理环境。
镜像技术细节
该镜像基于PyTorch 2.6.0框架构建,支持Python 3.12环境,主要面向CPU计算场景。镜像中预装了完整的PyTorch生态系统,包括:
- 核心框架:torch 2.6.0+cpu
- 计算机视觉库:torchvision 0.21.0+cpu
- 音频处理库:torchaudio 2.6.0+cpu
- 模型服务工具:torchserve 0.12.0和torch-model-archiver 0.12.0
预装软件包分析
镜像中包含了丰富的Python软件包和系统依赖,确保开箱即用的深度学习开发体验:
Python生态组件
- 数据处理:NumPy 2.2.3、Pandas 2.2.3
- 科学计算:SciPy 1.15.2、scikit-learn 1.6.1
- 计算机视觉:OpenCV-Python 4.11.0.86、Pillow 11.1.0
- 开发工具:Cython 3.0.12、ninja 1.11.1.1
- AWS集成:boto3 1.36.24、awscli 1.37.24
系统级依赖
- 编译器支持:libgcc-11-dev、libstdc++-11-dev
- 开发工具:emacs编辑器套件
版本兼容性与应用场景
这一版本的DLC镜像特别适合以下场景:
- ARM架构优化:专为AWS Graviton等ARM处理器优化,提供更好的性价比
- 生产推理:包含完整的模型服务工具链,可直接部署PyTorch模型
- 开发测试:预装常用数据处理和可视化库,加速模型开发周期
- 教育研究:开箱即用的环境降低了深度学习入门门槛
技术演进与选择建议
PyTorch 2.6.0版本带来了多项性能改进和新特性,结合ARM64架构的优势,这一镜像特别适合:
- 需要低成本运行推理工作负载的用户
- 希望利用ARM架构能效优势的环保计算场景
- 在边缘设备上部署模型的开发者
对于考虑从x86架构迁移到ARM的用户,这一镜像提供了良好的测试基准。开发者可以直接基于此镜像构建应用,无需担心底层依赖问题,专注于模型开发和业务逻辑实现。
AWS持续更新其DLC产品线,为机器学习从业者提供经过充分测试和优化的环境,这一PyTorch ARM64镜像的发布进一步丰富了用户的选择,特别是在能效敏感型应用场景中。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
209
2.21 K

暂无简介
Dart
520
115

Ascend Extension for PyTorch
Python
64
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
87

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
577

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194