LLM-Blender 使用教程
2024-09-18 05:31:59作者:彭桢灵Jeremy
1. 项目介绍
LLM-Blender 是一个创新的集成框架,旨在通过利用多个开源大型语言模型(LLMs)的多样性优势,实现持续卓越的性能。该项目由 Dongfu Jiang、Xiang Ren 和 Bill Yuchen Lin 开发,并在 ACL 2023 会议上发表。
LLM-Blender 的核心思想是通过两个模块来提升 LLMs 的能力:
- PairRanker:使用专门的成对比较方法来区分候选输出之间的细微差异。
- GenFuser:旨在合并 PairRanker 选出的顶级候选输出,生成改进的输出。
2. 项目快速启动
安装
首先,通过 pip 安装 LLM-Blender:
pip install llm-blender
或者,从 GitHub 克隆并安装:
git clone https://github.com/yuchenlin/LLM-Blender.git
cd LLM-Blender
pip install -e .
使用示例
以下是一个简单的使用示例,展示如何加载 PairRanker 并进行成对比较:
import llm_blender
# 初始化 Blender
blender = llm_blender.Blender()
# 加载 PairRanker 模型
blender.loadranker("llm-blender/PairRM")
# 定义输入和候选输出
inputs = ["hello, how are you?", "I love you"]
candidates_A = ["hi", "I hate you"]
candidates_B = ["f**k off", "I love you too"]
# 进行成对比较
comparison_results = blender.compare(inputs, candidates_A, candidates_B)
print(comparison_results)
3. 应用案例和最佳实践
案例1:最佳N采样(Best-of-N Sampling)
最佳N采样是一种通过采样和重新排序来提高 LLMs 响应质量的策略。以下是一个在 Zephyr-7b 模型上应用最佳N采样的示例:
import llm_blender
from transformers import AutoTokenizer, AutoModelForCausalLM
# 加载模型和分词器
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
model = AutoModelForCausalLM.from_pretrained("HuggingFaceH4/zephyr-7b-beta", device_map="auto")
# 初始化 Blender
blender = llm_blender.Blender()
blender.loadranker("llm-blender/PairRM")
# 定义输入
inputs = ["can you tell me a joke about OpenAI?"]
# 进行最佳N采样
outputs = blender.best_of_n_generate(model, tokenizer, inputs, n=10)
print(outputs)
案例2:直接偏好优化(DPO)
PairRM 的成对比较自然支持 DPO,这是一种直接偏好优化方法,用于通过成对比较信号优化模型。以下是一个使用 PairRM 进行 DPO 的示例:
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from llm_blender.pair_ranker.pairrm import DebertaV2PairRM
from transformers import AutoTokenizer
# 加载 PairRM 模型
pairrm = DebertaV2PairRM.from_pretrained("llm-blender/PairRM-hf", device_map="cuda:0")
tokenizer = AutoTokenizer.from_pretrained('llm-blender/PairRM-hf')
# 定义输入和候选输出
inputs = ["hello", "I love you"]
candidates_A = ["hi", "I hate you"]
candidates_B = ["f**k off", "I love you too"]
# 进行成对比较
encodings = tokenizer.encode_pair(inputs, candidates_A, candidates_B)
outputs = pairrm(**encodings)
print(outputs.logits)
4. 典型生态项目
生态项目1:Snorkel-Mistral-PairRM-DPO
Snorkel-Mistral-PairRM-DPO 是一个在 Alpaca-eval 排行榜上表现优异的项目,使用了 PairRM 进行直接偏好优化。
生态项目2:OpenHermesPreferences
OpenHermesPreferences 是一个包含超过 100 万条偏好数据集的项目,这些数据集由 PairRM 进行标注。
通过这些生态项目,LLM-Blender 展示了其在不同应用场景中的广泛适用性和强大性能。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137