LLM-Blender 使用教程
2024-09-18 09:28:57作者:彭桢灵Jeremy
1. 项目介绍
LLM-Blender 是一个创新的集成框架,旨在通过利用多个开源大型语言模型(LLMs)的多样性优势,实现持续卓越的性能。该项目由 Dongfu Jiang、Xiang Ren 和 Bill Yuchen Lin 开发,并在 ACL 2023 会议上发表。
LLM-Blender 的核心思想是通过两个模块来提升 LLMs 的能力:
- PairRanker:使用专门的成对比较方法来区分候选输出之间的细微差异。
- GenFuser:旨在合并 PairRanker 选出的顶级候选输出,生成改进的输出。
2. 项目快速启动
安装
首先,通过 pip 安装 LLM-Blender:
pip install llm-blender
或者,从 GitHub 克隆并安装:
git clone https://github.com/yuchenlin/LLM-Blender.git
cd LLM-Blender
pip install -e .
使用示例
以下是一个简单的使用示例,展示如何加载 PairRanker 并进行成对比较:
import llm_blender
# 初始化 Blender
blender = llm_blender.Blender()
# 加载 PairRanker 模型
blender.loadranker("llm-blender/PairRM")
# 定义输入和候选输出
inputs = ["hello, how are you?", "I love you"]
candidates_A = ["hi", "I hate you"]
candidates_B = ["f**k off", "I love you too"]
# 进行成对比较
comparison_results = blender.compare(inputs, candidates_A, candidates_B)
print(comparison_results)
3. 应用案例和最佳实践
案例1:最佳N采样(Best-of-N Sampling)
最佳N采样是一种通过采样和重新排序来提高 LLMs 响应质量的策略。以下是一个在 Zephyr-7b 模型上应用最佳N采样的示例:
import llm_blender
from transformers import AutoTokenizer, AutoModelForCausalLM
# 加载模型和分词器
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
model = AutoModelForCausalLM.from_pretrained("HuggingFaceH4/zephyr-7b-beta", device_map="auto")
# 初始化 Blender
blender = llm_blender.Blender()
blender.loadranker("llm-blender/PairRM")
# 定义输入
inputs = ["can you tell me a joke about OpenAI?"]
# 进行最佳N采样
outputs = blender.best_of_n_generate(model, tokenizer, inputs, n=10)
print(outputs)
案例2:直接偏好优化(DPO)
PairRM 的成对比较自然支持 DPO,这是一种直接偏好优化方法,用于通过成对比较信号优化模型。以下是一个使用 PairRM 进行 DPO 的示例:
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from llm_blender.pair_ranker.pairrm import DebertaV2PairRM
from transformers import AutoTokenizer
# 加载 PairRM 模型
pairrm = DebertaV2PairRM.from_pretrained("llm-blender/PairRM-hf", device_map="cuda:0")
tokenizer = AutoTokenizer.from_pretrained('llm-blender/PairRM-hf')
# 定义输入和候选输出
inputs = ["hello", "I love you"]
candidates_A = ["hi", "I hate you"]
candidates_B = ["f**k off", "I love you too"]
# 进行成对比较
encodings = tokenizer.encode_pair(inputs, candidates_A, candidates_B)
outputs = pairrm(**encodings)
print(outputs.logits)
4. 典型生态项目
生态项目1:Snorkel-Mistral-PairRM-DPO
Snorkel-Mistral-PairRM-DPO 是一个在 Alpaca-eval 排行榜上表现优异的项目,使用了 PairRM 进行直接偏好优化。
生态项目2:OpenHermesPreferences
OpenHermesPreferences 是一个包含超过 100 万条偏好数据集的项目,这些数据集由 PairRM 进行标注。
通过这些生态项目,LLM-Blender 展示了其在不同应用场景中的广泛适用性和强大性能。
登录后查看全文
热门项目推荐
相关项目推荐
暂无数据
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
349
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758