LLM-Blender 使用教程
2024-09-18 14:36:40作者:彭桢灵Jeremy
1. 项目介绍
LLM-Blender 是一个创新的集成框架,旨在通过利用多个开源大型语言模型(LLMs)的多样性优势,实现持续卓越的性能。该项目由 Dongfu Jiang、Xiang Ren 和 Bill Yuchen Lin 开发,并在 ACL 2023 会议上发表。
LLM-Blender 的核心思想是通过两个模块来提升 LLMs 的能力:
- PairRanker:使用专门的成对比较方法来区分候选输出之间的细微差异。
- GenFuser:旨在合并 PairRanker 选出的顶级候选输出,生成改进的输出。
2. 项目快速启动
安装
首先,通过 pip 安装 LLM-Blender:
pip install llm-blender
或者,从 GitHub 克隆并安装:
git clone https://github.com/yuchenlin/LLM-Blender.git
cd LLM-Blender
pip install -e .
使用示例
以下是一个简单的使用示例,展示如何加载 PairRanker 并进行成对比较:
import llm_blender
# 初始化 Blender
blender = llm_blender.Blender()
# 加载 PairRanker 模型
blender.loadranker("llm-blender/PairRM")
# 定义输入和候选输出
inputs = ["hello, how are you?", "I love you"]
candidates_A = ["hi", "I hate you"]
candidates_B = ["f**k off", "I love you too"]
# 进行成对比较
comparison_results = blender.compare(inputs, candidates_A, candidates_B)
print(comparison_results)
3. 应用案例和最佳实践
案例1:最佳N采样(Best-of-N Sampling)
最佳N采样是一种通过采样和重新排序来提高 LLMs 响应质量的策略。以下是一个在 Zephyr-7b 模型上应用最佳N采样的示例:
import llm_blender
from transformers import AutoTokenizer, AutoModelForCausalLM
# 加载模型和分词器
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
model = AutoModelForCausalLM.from_pretrained("HuggingFaceH4/zephyr-7b-beta", device_map="auto")
# 初始化 Blender
blender = llm_blender.Blender()
blender.loadranker("llm-blender/PairRM")
# 定义输入
inputs = ["can you tell me a joke about OpenAI?"]
# 进行最佳N采样
outputs = blender.best_of_n_generate(model, tokenizer, inputs, n=10)
print(outputs)
案例2:直接偏好优化(DPO)
PairRM 的成对比较自然支持 DPO,这是一种直接偏好优化方法,用于通过成对比较信号优化模型。以下是一个使用 PairRM 进行 DPO 的示例:
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from llm_blender.pair_ranker.pairrm import DebertaV2PairRM
from transformers import AutoTokenizer
# 加载 PairRM 模型
pairrm = DebertaV2PairRM.from_pretrained("llm-blender/PairRM-hf", device_map="cuda:0")
tokenizer = AutoTokenizer.from_pretrained('llm-blender/PairRM-hf')
# 定义输入和候选输出
inputs = ["hello", "I love you"]
candidates_A = ["hi", "I hate you"]
candidates_B = ["f**k off", "I love you too"]
# 进行成对比较
encodings = tokenizer.encode_pair(inputs, candidates_A, candidates_B)
outputs = pairrm(**encodings)
print(outputs.logits)
4. 典型生态项目
生态项目1:Snorkel-Mistral-PairRM-DPO
Snorkel-Mistral-PairRM-DPO 是一个在 Alpaca-eval 排行榜上表现优异的项目,使用了 PairRM 进行直接偏好优化。
生态项目2:OpenHermesPreferences
OpenHermesPreferences 是一个包含超过 100 万条偏好数据集的项目,这些数据集由 PairRM 进行标注。
通过这些生态项目,LLM-Blender 展示了其在不同应用场景中的广泛适用性和强大性能。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
186
200
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
281
100
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
381
3.51 K
暂无简介
Dart
625
141
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210