BoundaryML项目中如何获取LLM原始输出内容的技术解析
在BoundaryML项目中,开发者经常需要处理大语言模型(LLM)的输出结果。标准情况下,当调用baml函数如b.FooBar()时,我们会得到一个结构化对象,但有时我们还需要获取原始的完整输出内容,特别是当输出中包含中间推理过程或其他非结构化信息时。
原始输出获取的需求场景
在实际应用中,LLM的输出通常包含两个部分:
- 结构化数据部分(如JSON格式的指令)
- 非结构化的中间推理过程(如"Let's think step by step"这样的思考链)
虽然BoundaryML默认会解析结构化部分并返回对象,但在以下场景中开发者可能需要原始输出:
- 调试和观察模型的完整推理过程
- 在用户界面中展示模型的思考过程
- 记录完整的交互历史用于分析
- 自定义输出格式和展示方式
技术实现方案
BoundaryML提供了Collector机制来捕获原始输出。具体实现方式如下:
from baml_client import b
from baml_py import Collector
# 创建Collector实例
collector = Collector()
# 调用baml函数并传入collector选项
result = b.FooBar(
baml_options={
"collector": collector,
},
)
# 获取最后一次调用的原始输出
if collector.last:
print(collector.last.raw_llm_response)
技术细节解析
-
Collector类:这是BoundaryML提供的一个专门用于收集LLM调用信息的工具类,可以捕获包括原始响应在内的各种调用数据。
-
baml_options参数:这是BoundaryML函数调用的一个特殊参数,用于传递各种调用选项,其中collector选项允许我们指定一个收集器实例。
-
last属性:Collector实例的last属性保存了最后一次调用的详细信息,包括原始响应(raw_llm_response)、处理后的结果等。
-
原始响应内容:raw_llm_response属性包含了LLM返回的完整、未经处理的原始文本内容,包括任何中间推理过程和结构化数据部分。
最佳实践建议
-
错误处理:在使用collector.last前应检查其是否存在,避免空引用异常。
-
性能考虑:虽然收集原始响应很有用,但在高频率调用场景下,应注意这可能带来的内存开销。
-
敏感信息:如果响应中包含敏感信息,在记录或展示原始输出时应注意进行适当处理。
-
日志整合:可以将Collector机制与现有日志系统整合,实现更全面的调用追踪。
总结
BoundaryML通过Collector机制为开发者提供了灵活获取LLM原始输出的能力,这对于调试、展示和记录完整交互过程非常有价值。开发者可以根据实际需求选择性地使用这一功能,在保持主要业务逻辑简洁的同时,也能获取所需的详细输出信息。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00