BoundaryML项目中如何获取LLM原始输出内容的技术解析
在BoundaryML项目中,开发者经常需要处理大语言模型(LLM)的输出结果。标准情况下,当调用baml函数如b.FooBar()时,我们会得到一个结构化对象,但有时我们还需要获取原始的完整输出内容,特别是当输出中包含中间推理过程或其他非结构化信息时。
原始输出获取的需求场景
在实际应用中,LLM的输出通常包含两个部分:
- 结构化数据部分(如JSON格式的指令)
- 非结构化的中间推理过程(如"Let's think step by step"这样的思考链)
虽然BoundaryML默认会解析结构化部分并返回对象,但在以下场景中开发者可能需要原始输出:
- 调试和观察模型的完整推理过程
- 在用户界面中展示模型的思考过程
- 记录完整的交互历史用于分析
- 自定义输出格式和展示方式
技术实现方案
BoundaryML提供了Collector机制来捕获原始输出。具体实现方式如下:
from baml_client import b
from baml_py import Collector
# 创建Collector实例
collector = Collector()
# 调用baml函数并传入collector选项
result = b.FooBar(
baml_options={
"collector": collector,
},
)
# 获取最后一次调用的原始输出
if collector.last:
print(collector.last.raw_llm_response)
技术细节解析
-
Collector类:这是BoundaryML提供的一个专门用于收集LLM调用信息的工具类,可以捕获包括原始响应在内的各种调用数据。
-
baml_options参数:这是BoundaryML函数调用的一个特殊参数,用于传递各种调用选项,其中collector选项允许我们指定一个收集器实例。
-
last属性:Collector实例的last属性保存了最后一次调用的详细信息,包括原始响应(raw_llm_response)、处理后的结果等。
-
原始响应内容:raw_llm_response属性包含了LLM返回的完整、未经处理的原始文本内容,包括任何中间推理过程和结构化数据部分。
最佳实践建议
-
错误处理:在使用collector.last前应检查其是否存在,避免空引用异常。
-
性能考虑:虽然收集原始响应很有用,但在高频率调用场景下,应注意这可能带来的内存开销。
-
敏感信息:如果响应中包含敏感信息,在记录或展示原始输出时应注意进行适当处理。
-
日志整合:可以将Collector机制与现有日志系统整合,实现更全面的调用追踪。
总结
BoundaryML通过Collector机制为开发者提供了灵活获取LLM原始输出的能力,这对于调试、展示和记录完整交互过程非常有价值。开发者可以根据实际需求选择性地使用这一功能,在保持主要业务逻辑简洁的同时,也能获取所需的详细输出信息。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00